A novel kind of a multicomponent hierarchy of discrete soliton equations and its application
Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 3, pp. 421-436 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on a Lie algebra $\hat g$, we presented a method for constructing multicomponent integrable hierarchies of discrete soliton equations. As an application of the method, we consider the modified Toda spectral problem and obtain a new multicomponent integrable hierarchy of lattice equations with two arbitrary constants, which can be reduced to two multicomponent integrable systems, one of which is the famous Toda lattice system.
Keywords: multicomponent hierarchy of discrete soliton equations, Lie algebra $\hat g$, generalized Toda spectral problem.
@article{TMF_2023_215_3_a5,
     author = {Zhenbo Wang and Haifeng Wang and Yufeng Zhang},
     title = {A~novel kind of a~multicomponent hierarchy of discrete soliton equations and its application},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {421--436},
     year = {2023},
     volume = {215},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a5/}
}
TY  - JOUR
AU  - Zhenbo Wang
AU  - Haifeng Wang
AU  - Yufeng Zhang
TI  - A novel kind of a multicomponent hierarchy of discrete soliton equations and its application
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 421
EP  - 436
VL  - 215
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a5/
LA  - ru
ID  - TMF_2023_215_3_a5
ER  - 
%0 Journal Article
%A Zhenbo Wang
%A Haifeng Wang
%A Yufeng Zhang
%T A novel kind of a multicomponent hierarchy of discrete soliton equations and its application
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 421-436
%V 215
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a5/
%G ru
%F TMF_2023_215_3_a5
Zhenbo Wang; Haifeng Wang; Yufeng Zhang. A novel kind of a multicomponent hierarchy of discrete soliton equations and its application. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 3, pp. 421-436. http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a5/

[1] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | DOI | MR | MR | Zbl | Zbl

[2] F. Magri, “A geometrical approach to the nonlinear solvable equations”, Nonlinear Evolution Equations and Dynamical Systems (University of Lecce, June 20–23, 1979), Lecture Notes in Physics, 120, eds. M. Boiti, F. Pempinelli, G. Soliani, Springer, Berlin, Heidelberg, 1980, 233–263 | DOI | MR

[3] G. Z. Tu, “The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems”, J. Math. Phys., 30:2 (1989), 330–338 | DOI | MR

[4] G. Z. Tu, “A trace identity and its applications to the theory of discrete integrable systems”, J. Phys. A: Math. Gen., 23:17 (1999), 3903–3922 | DOI | MR

[5] M. Blaszak, K. Marciniak, “$R$-matrix approach to lattice integrable systems”, J. Math. Phys., 35:9 (1994), 4661–4682 | DOI | MR

[6] Y. B. Suris, “$r$-Matrices for relativistic deformations of integrable systems”, J. Nonlinear Math. Phys., 6:4 (1999), 411–447 | DOI | MR

[7] O. Ragnisco, P. M. Santini, “A unified algebraic approach to integral and discrete evolution equations”, Inverse Problems, 6:3 (1990), 441–452 | DOI | MR

[8] A. A. Belov, K. D. Chaltikian, “Lattice analogues of $W$-algebras and classical integrable equations”, Phys. Lett. B, 309:3–4 (1993), 268–274 | DOI | MR

[9] R. J. Schilling, “A systematic approach to the soliton equations of a discrete eigenvalue problem”, J. Math. Phys., 30:7 (1989), 1487–1501 | DOI | MR

[10] W. X. Ma, B. Fuchssteiner, “Integrable theory of the perturbation equations”, Chaos Solitons Fractals, 7:8 (1996), 1227–1250 | DOI | MR

[11] W.-X. Ma, “Integrable couplings of soliton equations by perturbations I: A general theory and application to the KdV hierarchy”, Methods Appl. Anal., 7:1 (2000), 21–55 | DOI | MR

[12] W. X. Ma, B. Fuchssteiner, “Integrable theory of the perturbation equations”, Chaos Solitons Fractals, 7:8 (1996), 1227–1250, arXiv: solv-int/9604004 | DOI | MR

[13] W.-X. Ma, “Enlarging spectral problems to construct integrable couplings of soliton equations”, Phys. Lett. A, 316:1–2 (2003), 72–76 | DOI | MR

[14] W.-X. Ma, “Integrable couplings of vector AKNS soliton equations”, J. Math. Phys., 46:3 (2005), 033507, 19 pp. | DOI | MR

[15] F. Guo, Y. Zhang, “A new loop algebra and a corresponding integrable hierarchy, as well as its integrable coupling”, J. Math. Phys., 44:12 (2003), 5793–5803 | DOI | MR

[16] Y. F. Zhang, “A generalized multi-component Glachette–Johnson (GJ) hierarchy and its integrable coupling system”, Chaos Solitons Fractals, 21:2 (2004), 305–310 | DOI | MR

[17] S. Shen, C. Li, Y. Jin, W.-X. Ma, “Completion of the Ablowitz–Kaup–Newell–Segur integrable coupling”, J. Math. Phys., 59:10 (2018), 103503, 11 pp., arXiv: 1706.04308 | DOI | MR

[18] Y. Zhang, H. Tam, “Applications of the Lie algebra $\mathrm{gl}(2)$”, Modern Phys. Lett. B, 23:14 (2009), 1763–1770 | DOI | MR

[19] L. Luo, E. G. Fan, “The algebraic structure of discrete zero curvature equations associated with integrable couplings and application to enlarged Volterra systems”, Sci. China Ser. A: Math., 52:1 (2009), 147–159 | DOI | MR

[20] Y. F. Zhang, W. Rui, “A few continuous and discrete dynamical systems”, Rep. Math. Phys., 78:1 (2016), 19–32 | DOI | MR

[21] X.-X. Xu, “An integrable coupling hierarchy of the Mkdv_ integrable systems, its Hamiltonian structure and corresponding nonisospectral integrable hierarchy”, Appl. Math. Comput., 216:1 (2010), 344–353 | MR

[22] E. G. Fan, Y. F. Zhang, “A simple method for generating integrable hierarchies with multi-potential functions”, Chaos Solitons Fractals, 25:2 (2005), 425–439 | DOI | MR

[23] F. Yu, H. Zhang, “Hamiltonian structures of the integrable couplings for the multicomponent Dirac hierarchy”, Appl. Math. Comput., 197:2 (2008), 828–835 | DOI | MR

[24] M. McAnally, W.-X. Ma, “Two integrable couplings of a generalized D-Kaup–Newell hierarchy and their Hamiltonian and bi-Hamiltonian structures”, Nonlinear Analys., 191 (2020), 111629, 13 pp. | DOI | MR

[25] X.-G. Geng, W.-X. Ma, “A generalized Kaup–Newell spectral problem, soliton equations and finite-dimensional integrable systems”, Nuovo Cimento A, 108:4 (1995), 477–486 | DOI | MR

[26] Y. Zhang, H. Zhang, Q. Yan, “Integrable couplings of Botie–Pempinelli–Tu (BPT) hierarchy”, Phys. Lett. A, 299:5–6 (2002), 543–548 | DOI | MR

[27] Y.-F. Zhang, H.-W. Tam, “Generation of nonlinear evolution equations by reductions of the self-dual Yang–Mills equations”, Commun. Theor. Phys. (Beijing), 61:2 (2014), 203–206 | DOI | MR

[28] Chuan-Chzhun Li, Tszin-Sun Khe, “O rasshirennoi ierarkhii $Z_N$-Tody”, TMF, 185:2 (2015), 289–312 | DOI | DOI | MR

[29] P. R. Gordoa, A. Pickering, Z. N. Zhu, “New $2+1$ dimensional nonisospectral Toda lattice hierarchy”, J. Math. Phys., 48:2 (2007), 023515, 18 pp. | DOI | MR

[30] Y. F. Zhang, H. Q. Zhang, “A direct method for integrable couplings of TD hierarchy”, J. Math. Phys., 43:1 (2002), 466–472 | DOI | MR

[31] S. N. M. Ruijsenaars, “Relativistic Toda systems”, Commun. Math. Phys., 133:2 (1990), 217–247 | DOI | MR

[32] W.-X. Ma, X.-X. Xu, Y. Zhang, “Semidirect sums of Lie algebras and discrete integrable couplings”, J. Math. Phys., 47:5 (2006), 053501, 16 pp. | DOI | MR

[33] H. F. Wang, Y. F. Zhang, “A new multi-component integrable coupling and its application to isospectral and nonisospectral problems”, Commun. Nonlinear Sci. Numer. Simul., 105 (2022), 106075, 15 pp. | DOI | MR

[34] H. F. Wang, Y. F. Zhang, “A kind of non-isospectral and isospectral integrable couplings and their Hamiltonian systems”, Commun. Nonlinear Sci. Numer. Simul., 99 (2021), 105822, 15 pp. | DOI | MR

[35] M. Toda, Theory of Nonlinear Lattice, Springer Series in Solid-State Sciences, 20, Springer, Berlin, 1989 | DOI | MR

[36] Y. B. Suris, The Problem of Integrable Discretization: Hamiltonian Approach, Progress in Mathematics, 219, Birkhäuser, Basel, 2003 | DOI | MR

[37] W.-X. Ma, X.-X. Xu, “Positive and negative hierarchies of integrable lattice models associated with a Hamiltonian pair”, Internat. J. Theoret. Phys., 43:1 (2004), 219–235 | DOI | MR

[38] S. V. Manakov, “O polnoi integriruemosti i stokhastizatsii v diskretnykh dinamicheskikh sistemakh”, ZhETF, 67:2 (1974), 543–555 | MR

[39] H. Flaschka, “The Toda lattice. II. Existence of integrals”, Phys. Rev. B, 9:4 (1974), 1924–1925 | DOI | MR

[40] M. A. Olshanetsky, A. M. Perelomov, “Classical integrable finite-dimensional systems related to Lie algebras”, Phys. Rep., 71:5 (1981), 313–400 | DOI | MR

[41] W. X. Ma, Y. You, “Rational solutions of the Toda lattice equation in Casoratian form”, Chaos Solitons Fractals, 22:2 (2004), 395–406 | DOI | MR

[42] W.-X. Ma, K. Maruno, “Complexiton solutions of the Toda lattice equation”, Phys. A, 343:1–4 (2004), 219–237 | DOI | MR

[43] H. F. Wang, The multi-component non-isospectral KdV hierarchies associated with a novel kind of $N$-dimensional Lie algebra, arXiv: 2201.03205