Integrability of the vector nonlinear Schrödinger–Maxwell–Bloch equation and the  Cauchy matrix approach
Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 3, pp. 401-420 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the integrability and soliton solutions of the vector nonlinear Schrödinger–Maxwell–Bloch (VNLS–MB) equation. This equation is derived using the generalized $\bar \partial$-dressing method in a local $4\times 4$ matrix $\bar \partial$-problem. The vector nonlinear Schrödinger equation with self-consistent sources (VNLSSCS) is obtained and is proved to be equivalent to the VNLS–MB equation. Starting with Sylvester equation and the equivalence between the VNLS–MB and VNLSSCS equations, the $N$-soliton solutions of the VNLS–MB equation are successfully obtained by the Cauchy matrix approach. As an application, some interesting patterns of dynamical behavior are displayed.
Keywords: vector nonlinear Schrödinger–Maxwell–Bloch equation, zero-curvature equation, Cauchy matrix approach
Mots-clés : soliton solution.
@article{TMF_2023_215_3_a4,
     author = {Hui Zhou and Yehui Huang and Yuqin Yao},
     title = {Integrability of the~vector nonlinear {Schr\"odinger{\textendash}Maxwell{\textendash}Bloch} equation and the~ {Cauchy} matrix approach},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {401--420},
     year = {2023},
     volume = {215},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a4/}
}
TY  - JOUR
AU  - Hui Zhou
AU  - Yehui Huang
AU  - Yuqin Yao
TI  - Integrability of the vector nonlinear Schrödinger–Maxwell–Bloch equation and the  Cauchy matrix approach
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 401
EP  - 420
VL  - 215
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a4/
LA  - ru
ID  - TMF_2023_215_3_a4
ER  - 
%0 Journal Article
%A Hui Zhou
%A Yehui Huang
%A Yuqin Yao
%T Integrability of the vector nonlinear Schrödinger–Maxwell–Bloch equation and the  Cauchy matrix approach
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 401-420
%V 215
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a4/
%G ru
%F TMF_2023_215_3_a4
Hui Zhou; Yehui Huang; Yuqin Yao. Integrability of the vector nonlinear Schrödinger–Maxwell–Bloch equation and the  Cauchy matrix approach. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 3, pp. 401-420. http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a4/

[1] A. Gkogkou, B. Prinari, “Soliton interactions in certain square matrix nonlinear Schrödinger systems”, Eur. Phys. J. Plus, 135 (2020), 609, 21 pp. | DOI

[2] S. L. McCall, E. L. Hahn, “Self-induced transparency by pulsed coherent light”, Phys. Rev. Lett., 18:21 (1967), 908–911 | DOI

[3] S. L. McCall, E. L. Hahn, “Self-induced transparency”, Phys. Rev., 183:2 (1969), 457–485 | DOI

[4] A. I. Maimistov, A. M. Basharov, S. O. Elyutin, Yu. M. Sklyarov, “Present state of self-induced transparency theory”, Phys. Rep., 191:1 (1990), 1–108 | DOI

[5] M. J. Ablowitz, D. J. Kaup, A. C. Newell, “Coherent pulse propagation, a dispersive, irreversible phenomenon”, J. Math. Phys., 15:11 (1974), 1852–1858 | DOI

[6] J.-W. Wu, J. Cheng, X.-Y. Yu, J.-Y. Zhou, “Evolution of femtosecond pulse in resonant atomic medium with long distance”, Acta Opt. Sin., 25 (2005), 1265–1270

[7] D.-W. Zuo, G.-F. Zhang, “Soliton interaction for Maxwell–Bloch systems”, Optik, 221 (2020), 164960, 6 pp. | DOI

[8] Y. Li, J. Li, R.-Q. Wang, “$N$-soliton solutions for the Maxwell–Bloch equations via the Riemann–Hilbert approach”, Mod. Phys. Lett. B, 35:21 (2021), 2150356, 11 pp. | DOI | MR

[9] M. Nakazawa, E. Yamada, H. Kubota, “Coexistence of self-induced transparency soliton and nonlinear Schrödinger soliton”, Phys. Rev. Lett., 66:20 (1991), 2625–2628 | DOI

[10] M. Nakazawa, Y. Kimura, K. Kurokawa, K. Suzuki, “Self-induced-transparency solitons in an erbium doped fiber waveguide”, Phys. Rev. A, 45:1 (1992), R23–R26 | DOI

[11] J.-S. He, Y. Cheng, Y.-S. Li, “The Darboux transformation for NLS-MB equations”, Commun. Theor. Phys., 38:4 (2002), 493–496 | DOI | MR

[12] D.-W. Zuo, Y.-T. Gao, L. Xue, Y.-J. Feng, Y.-H. Sun, “Rogue waves for the generalized nonlinear Schrödinger–Maxwell–Bloch system in optical-fiber communication”, Appl. Math. Lett., 40 (2015), 78–83 | DOI | MR

[13] E. V. Doktorov, S. B. Leble, A Dressing Method in Mathematical Physics, Mathematical Physics Studies, 28, Springer, Dordrecht, 2007 | DOI | MR

[14] Y.-H. Kuang, J.-Y. Zhu, “The higher-order soliton solutions for the coupled Sasa–Satsuma system via the $\bar \partial$-dressing method”, Appl. Math. Lett., 66 (2017), 47–53 | DOI | MR

[15] J.-H. Luo, E.-G. Fan, “$\bar \partial$-dressing method for the coupled Gerdjikov–Ivanov equation”, Appl. Math. Lett., 110 (2020), 106589, 10 pp. | DOI | MR

[16] Z.-Q. Li, S.-F. Tian, “A hierarchy of nonlocal nonlinear evolution equations and $\bar \partial$-dressing method”, Appl. Math. Lett., 120 (2021), 107254, 8 pp. | DOI | MR

[17] Z.-Y. Wang, S.-F. Tian, J. Cheng, “The $\bar \partial$-dressing method and soliton solutions for the three-component coupled Hirota equations”, J. Math. Phys, 62:9 (2021), 093510, 18 pp. | DOI | MR

[18] Y.-Q. Yao, Y.-H. Huang, E.-G. Fan, “The $\bar \partial$-dressing method and Cauchy matrix for the defocusing matrix NLS system”, Appl. Math. Lett., 117 (2021), 107143, 8 pp. | DOI | MR

[19] J.-H. Luo, E.-G. Fan, “A $\bar \partial$-dressing approach to the Kundu–Eckhaus equation”, J. Geom. Phys., 167 (2021), 104291, 10 pp. | DOI | MR

[20] X.-R. Wang, J.-Y. Zhu, Z.-J. Qiao, “New solutions to the differential-difference KP equation”, Appl. Math. Lett., 113 (2021), 106836, 7 pp. | DOI | MR

[21] X.-R. Wang, J.-Y. Zhu, “Dbar-approach to coupled nonlocal NLS equation and general nonlocal reduction”, Stud. Appl. Math, 148:1 (2022), 433–456 | DOI | MR

[22] J. J. Sylvester, “Sur l'equation en matrices $px=xq$”, C. R. Acad. Sci. Paris, 99:2 (1884), 67–71, 115–116

[23] S.-L. Zhao, “The Sylvester equation and integrable equations: The Ablowitz–Kaup–Newell–Segur system”, Rep. Math. Phys., 82:2 (2018), 241–263 | DOI | MR

[24] W. Feng, S.-L. Zhao, “Cauchy matrix type solutions for the nonlocal nonlinear Schrödinger equation”, Rep. Math. Phys., 84:1 (2019), 75–83 | DOI | MR

[25] H.-J. Tian, D.-J. Zhang, “Cauchy matrix structure of the Mel'nikov model of long-short wave interaction”, Commun. Theor. Phys., 72:12 (2020), 125006, 11 pp. | DOI | MR

[26] B. Pronari, A. K. Ortiz, C. van der Mee, M. Grabowski, “Inverse scattering transform and solitons for square matrix nonlinear Schrödinger equations”, Stud. Appl. Math., 141:3 (2018), 308–352 | DOI | MR

[27] G.-Z. Tu, “The trace identity, a power tool for constructing the Hamiltonian structure of integrable systems”, J. Math. Phys., 30:2 (1989), 330–338 | DOI | MR