Chaos game in an extended hyperbolic plane
Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 3, pp. 388-400 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain formulas for the midpoint and quasimidpoint of parabolic and nonparabolic segments in the canonical frame of the second type on the extended hyperbolic plane $H^2$ whose components in the projective Cayley–Klein model are the Lobachevsky plane $\Lambda^2$ and a positive-curvature hyperbolic plane $\widehat{H}$. We propose an algorithm for the Chaos game in the $H^2$ plane and present the results of this game played with the prepared software package pyv on triangles in the $\Lambda^2$ plane and trihedrals in the $\widehat{H}$ plane.
Keywords: extended hyperbolic plane, Lobachevsky plane, hyperbolic plane of positive curvature, Chaos game, Sierpinski triangle.
Mots-clés : fractal
@article{TMF_2023_215_3_a3,
     author = {L. N. Romakina and I. V. Ushakov},
     title = {Chaos game in an~extended hyperbolic plane},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {388--400},
     year = {2023},
     volume = {215},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a3/}
}
TY  - JOUR
AU  - L. N. Romakina
AU  - I. V. Ushakov
TI  - Chaos game in an extended hyperbolic plane
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 388
EP  - 400
VL  - 215
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a3/
LA  - ru
ID  - TMF_2023_215_3_a3
ER  - 
%0 Journal Article
%A L. N. Romakina
%A I. V. Ushakov
%T Chaos game in an extended hyperbolic plane
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 388-400
%V 215
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a3/
%G ru
%F TMF_2023_215_3_a3
L. N. Romakina; I. V. Ushakov. Chaos game in an extended hyperbolic plane. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 3, pp. 388-400. http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a3/

[1] H. J. Jeffrey, “Chaos game visualization of sequences”, Computers $\$ Graphics, 16:1 (1992), 25–33 | DOI

[2] P. J. Deschavanne, A. Giron, J. Vilain, G. Fagot, B. Fertil, “Genomic signature: characterization and classification of species assessed by chaos game representation of sequences”, Mol. Biol. Evol., 16:10 (1999), 1391–1399 | DOI

[3] T. Hoang, Ch. Yin, S. S.-T. Yau, “Splice sites detection using chaos game representation and neural network”, Genomics, 112:2 (2020), 1847–1852 | DOI

[4] M. Fitzsimmons, H. Kunze, “Necessary/sufficient conditions for the chaos game to render quasi attractors”, Commun. Nonlinear Sci. Numer. Simul., 91 (2020), 105427, 13 pp. | DOI | MR

[5] S. Talatahari, M. Azizi, “Optimization of constrained mathematical and engineering design problems using chaos game optimization”, Comput. Ind. Eng., 145:4 (2020), 106560, 28 pp. | DOI

[6] P. Jiang, Z. Liu, J. Wang, L. Zhang, “Decomposition-selection-ensemble forecasting system for energy futures price forecasting based on multi-objective version of chaos game optimization algorithm”, Resources Policy, 73 (2021), 102234, 13 pp. | DOI

[7] H. F. Löchel, D. Heider, “Chaos game representation and its applications in bioinformatics”, Computational and Structural Biotechnology Journal, 19 (2021), 6263–6271 | DOI

[8] N. B. Thummadi, S. Charutha, M. Pal, P. Manimaran, “Multifractal and cross-correlation analysis on mitochondrial genome sequences using chaos game representations”, Mitochondrion, 60 (2021), 121–128 | DOI

[9] Q. Zhou, S. Qi, C. Ren, “Gene essentiality prediction based on chaos game representation and spiking neural networks”, Chaos Solitons Fractals, 144 (2021), 110649 pp. | DOI | MR

[10] L. N. Romakina, I. V. Ushakov, “The Chaos game in the hyperbolic plane of positive curvature”, Nonlinear Dynamics Integrability (NDI-2022), Abstracts (Satellite International Conference on Nonlinear Dynamics Integrability and Scientific School “Nonlinear Days”, Yaroslavl, June 27 – July 1, 2022), Yaroslavl State Univ., Yaroslavl, 2022, 86–88

[11] . https://github.com/MrReDoX/pyv

[12] F. Klein, Neevklidova geometriya, ONTI NKTP SSSR, M.–L., 1936 | MR

[13] B. A. Rozenfeld, Neevklidovy prostranstva, Nauka, M., 1969 | MR | Zbl

[14] N. V. Efimov, Vysshaya geometriya, Nauka, M., 1971 | MR | MR | Zbl

[15] L. N. Romakina, Geometriya giperbolicheskoi ploskosti polozhitelnoi krivizny. Ch. 1: Trigonometriya, Izd-vo Sarat. un-ta, Saratov, 2013

[16] L. N. Romakina, Geometriya giperbolicheskoi ploskosti polozhitelnoi krivizny. Ch. 2: Preobrazovaniya i prostye razbieniya, Izd-vo Sarat. un-ta, Saratov, 2013

[17] L. N. Romakina, “Prostye razbieniya giperbolicheskoi ploskosti polozhitelnoi krivizny”, Matem. sb., 203:9 (2012), 83–116 | DOI | DOI | MR | Zbl

[18] W. Sierpiński, “Sur une courbe dont tout point est un point de ramifications”, C. R. Acad. Sci. Paris, 160 (1915), 302–305 | Zbl

[19] L. N. Romakina, “Koordinaty seredin neparabolicheskikh otrezkov giperbolicheskoi ploskosti polozhitelnoi krivzny v kanonicheskom repere pervogo tipa”, Matematika. Mekhanika, 20 (2018), 70–72