Chaos game in an~extended hyperbolic plane
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 3, pp. 388-400
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We obtain formulas for the midpoint and quasimidpoint of parabolic and nonparabolic segments in the canonical frame of the second type on the extended hyperbolic plane $H^2$ whose components in the projective Cayley–Klein model are the Lobachevsky plane $\Lambda^2$ and a positive-curvature hyperbolic plane $\widehat{H}$. We propose an algorithm for the Chaos game in the $H^2$ plane and present the results of this game played with the prepared software package pyv on triangles in the $\Lambda^2$ plane and trihedrals in the $\widehat{H}$ plane.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
extended hyperbolic plane, Lobachevsky plane, hyperbolic plane of positive curvature, Chaos game, Sierpinski triangle.
Mots-clés : fractal
                    
                  
                
                
                Mots-clés : fractal
@article{TMF_2023_215_3_a3,
     author = {L. N. Romakina and I. V. Ushakov},
     title = {Chaos game in an~extended hyperbolic plane},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {388--400},
     publisher = {mathdoc},
     volume = {215},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a3/}
}
                      
                      
                    L. N. Romakina; I. V. Ushakov. Chaos game in an~extended hyperbolic plane. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 3, pp. 388-400. http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a3/
