Integrals of tau functions: A~round dance tau function and multimatrix integrals
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 3, pp. 377-387
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A multimatrix model can be built on two ingredients: the choice of an embedded graph and the choice of the integrand, that is, a tau function. We compare the simplest nontrivial tau function of the Toda lattice and the simplest nontrivial tau function of the $\mathcal N$-component Toda lattice in the context of their application to multimatrix integrals.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
tau function, special solution of the multicomponent KP hierarchy, embedded graph, Hurwitz number.
                    
                  
                
                
                @article{TMF_2023_215_3_a2,
     author = {A. Yu. Orlov},
     title = {Integrals of tau functions: {A~round} dance tau function and multimatrix integrals},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {377--387},
     publisher = {mathdoc},
     volume = {215},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a2/}
}
                      
                      
                    TY - JOUR AU - A. Yu. Orlov TI - Integrals of tau functions: A~round dance tau function and multimatrix integrals JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 377 EP - 387 VL - 215 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a2/ LA - ru ID - TMF_2023_215_3_a2 ER -
A. Yu. Orlov. Integrals of tau functions: A~round dance tau function and multimatrix integrals. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 3, pp. 377-387. http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a2/
