Contrast structures in the~reaction-- advection--diffusion problem appearing in a~drift--diffusion model of a~semiconductor in the~case of nonsmooth reaction
Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 3, pp. 360-376

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the boundary-value problem for the singularly perturbed reaction-advection-diffusion equation in the case of a small nonlinear advection and a nonsmooth reaction; it appears in a drift–diffusion model of a semiconductor. The key feature of the problem is the discontinuity of the derivative of the reactive term with respect to a spatial coordinate at a preliminary known point lying inside the interval under consideration. Using the asymptotic method of differential inequalities, we show that the problem can have several solutions with an internal transition layer in a small neighborhood of the discontinuity point. Each of these solutions can be asymptotically Lyapunov stable and unstable; we formulate sufficient conditions for both cases. It follows from the results of the asymptotic study that in the presence of an external current in the semiconductor with the N-shaped dependence of the drift velocity on the electric field strength, two neighboring stationary electron-depletion layers can exists in a small neighborhood of an internal point if the equilibrium electron concentration is an insufficiently smooth function of the spatial coordinate at that point.
Keywords: singularly perturbed elliptic problem, internal transition layers, method of differential inequalities, nonsmooth source, electron-depletion layer, GaAs, N-shaped current–voltage characteristics.
Mots-clés : reaction–advection–diffusion equation
@article{TMF_2023_215_3_a1,
     author = {E. I. Nikulin},
     title = {Contrast structures in the~reaction-- advection--diffusion problem appearing in a~drift--diffusion model of a~semiconductor in the~case of nonsmooth reaction},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {360--376},
     publisher = {mathdoc},
     volume = {215},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a1/}
}
TY  - JOUR
AU  - E. I. Nikulin
TI  - Contrast structures in the~reaction-- advection--diffusion problem appearing in a~drift--diffusion model of a~semiconductor in the~case of nonsmooth reaction
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 360
EP  - 376
VL  - 215
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a1/
LA  - ru
ID  - TMF_2023_215_3_a1
ER  - 
%0 Journal Article
%A E. I. Nikulin
%T Contrast structures in the~reaction-- advection--diffusion problem appearing in a~drift--diffusion model of a~semiconductor in the~case of nonsmooth reaction
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 360-376
%V 215
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a1/
%G ru
%F TMF_2023_215_3_a1
E. I. Nikulin. Contrast structures in the~reaction-- advection--diffusion problem appearing in a~drift--diffusion model of a~semiconductor in the~case of nonsmooth reaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 3, pp. 360-376. http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a1/