Contrast structures in the reaction– advection–diffusion problem appearing in a drift–diffusion model of a semiconductor in the case of nonsmooth reaction
Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 3, pp. 360-376 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the boundary-value problem for the singularly perturbed reaction-advection-diffusion equation in the case of a small nonlinear advection and a nonsmooth reaction; it appears in a drift–diffusion model of a semiconductor. The key feature of the problem is the discontinuity of the derivative of the reactive term with respect to a spatial coordinate at a preliminary known point lying inside the interval under consideration. Using the asymptotic method of differential inequalities, we show that the problem can have several solutions with an internal transition layer in a small neighborhood of the discontinuity point. Each of these solutions can be asymptotically Lyapunov stable and unstable; we formulate sufficient conditions for both cases. It follows from the results of the asymptotic study that in the presence of an external current in the semiconductor with the N-shaped dependence of the drift velocity on the electric field strength, two neighboring stationary electron-depletion layers can exists in a small neighborhood of an internal point if the equilibrium electron concentration is an insufficiently smooth function of the spatial coordinate at that point.
Keywords: singularly perturbed elliptic problem, internal transition layers, method of differential inequalities, nonsmooth source, electron-depletion layer, GaAs, N-shaped current–voltage characteristics.
Mots-clés : reaction–advection–diffusion equation
@article{TMF_2023_215_3_a1,
     author = {E. I. Nikulin},
     title = {Contrast structures in the~reaction{\textendash} advection{\textendash}diffusion problem appearing in a~drift{\textendash}diffusion model of a~semiconductor in the~case of nonsmooth reaction},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {360--376},
     year = {2023},
     volume = {215},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a1/}
}
TY  - JOUR
AU  - E. I. Nikulin
TI  - Contrast structures in the reaction– advection–diffusion problem appearing in a drift–diffusion model of a semiconductor in the case of nonsmooth reaction
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 360
EP  - 376
VL  - 215
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a1/
LA  - ru
ID  - TMF_2023_215_3_a1
ER  - 
%0 Journal Article
%A E. I. Nikulin
%T Contrast structures in the reaction– advection–diffusion problem appearing in a drift–diffusion model of a semiconductor in the case of nonsmooth reaction
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 360-376
%V 215
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a1/
%G ru
%F TMF_2023_215_3_a1
E. I. Nikulin. Contrast structures in the reaction– advection–diffusion problem appearing in a drift–diffusion model of a semiconductor in the case of nonsmooth reaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 3, pp. 360-376. http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a1/

[1] A. B. Vasileva, V. F. Butuzov, N. N. Nefedov, “Kontrastnye struktury v singulyarno vozmuschennykh zadachakh”, Fundament. i prikl. matem., 4:3 (1998), 799–851 | MR | Zbl

[2] N. N. Nefedov, E. I. Nikulin, “Existence and stability of periodic contrast structures in the reaction-advection-diffusion problem”, Russ. J. Math. Phys., 22:2 (2015), 215–226 | DOI | MR

[3] N. N. Nefedov, L. Recke, K. R. Schneider, “Existence and asymptotic stability of periodic solutions with an interior layer of reaction-advection-diffusion equations”, J. Math. Anal. Appl., 405:1 (2013), 90–103 | DOI | MR

[4] N. N. Nefedov, E. I. Nikulin, “Suschestvovanie i asimptoticheskaya ustoichivost periodicheskikh dvumernykh kontrastnykh struktur v zadache so slaboi lineinoi advektsiei”, Matem. zametki, 106:5 (2019), 708–722 | DOI | DOI | MR

[5] N. N. Nefedov, E. I. Nikulin, A. O. Orlov, “Existence of contrast structures in a problem with discontinuous reaction and advection”, Russ. J. Math. Phys., 29:2 (2022), 214–224 | DOI | MR

[6] N. N. Nefedov, E. I. Nikulin, A. O. Orlov, “Contrast structures in the reaction-diffusion-advection problem in the case of a weak reaction discontinuity”, Russ. J. Math. Phys., 29:1 (2022), 81–90 | DOI | MR

[7] N. N. Nefedov, E. I. Nikulin, “Suschestvovanie i ustoichivost periodicheskikh kontrastnykh struktur v zadache reaktsiya-advektsiya-diffuziya v sluchae sbalansirovannoi nelineinosti”, Differents. uravneniya, 53:4 (2017), 524–537 | DOI | DOI

[8] N. N. Nefedov, E. I. Nikulin, A. O. Orlov, “Dvizhenie fronta v zadache so slaboi advektsiei v sluchae nepreryvnogo istochnika i istochnika modulnogo tipa”, Differents. uravneniya, 58:6 (2022), 763–776 | DOI | DOI | MR

[9] N. T. Levashova, N. N. Nefedov, A. O. Orlov, “Statsionarnoe uravnenie reaktsii–diffuzii s razryvnym reaktivnym chlenom”, Zh. vychisl. matem. i matem. fiz., 57:5 (2017), 854–866 | DOI | DOI | MR

[10] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR

[11] N. N. Nefedov, “Metod differentsialnykh neravenstv dlya nekotorykh klassov nelineinykh singulyarno vozmuschennykh zadach s vnutrennimi sloyami”, Differents. uravneniya, 31:7 (1995), 1142–1149 | MR | Zbl

[12] A. B. Vasileva, M. A. Davydova, “O kontrastnoi strukture tipa stupenki dlya odnogo klassa nelineinykh singulyarno vozmuschennykh uravnenii vtorogo poryadka”, Zh. vychisl. matem. i matem. fiz., 38:6 (1998), 938–947 | MR | Zbl

[13] Ya Fei Pan, Min Kan Ni, M. A. Davydova, “Kontrastnye struktury v zadachakh dlya statsionarnogo uravneniya reaktsiya–diffuziya–advektsiya s razryvnoi nelineinostyu”, Matem. zametki, 104:5 (2018), 755–766 | DOI | DOI | MR

[14] V. T. Volkov, N. N. Nefedov, “Razvitie asimptoticheskogo metoda differentsialnykh neravenstv dlya issledovaniya periodicheskikh kontrastnykh struktur v uravneniyakh reaktsiya-diffuziya”, Zh. vychisl. matem. i matem. fiz., 46:4 (2006), 615–623 | DOI | MR | Zbl

[15] N. Nefedov, “Comparison principle for reaction-diffusion-advection problems with boundary and internal layers”, Numerical Analysis and Its Applications, Lecture Notes in Computer Science, 8236, eds. I. Dimov, I. Faragó, L. Vulkov, Springer, Berlin, Heidelberg, 2013, 62–72 | DOI | MR

[16] N. N. Nefedov, E. I. Nikulin, “O neustoichivykh resheniyakh s nemonotonnym pogranichnym sloem v dvumernoi zadache reaktsiya-diffuziya”, Matem. zametki, 110:6 (2021), 899–910 | DOI | DOI

[17] M. E. Levintshtein, Yu. K. Pozhela, M. S. Shur, Effekt Ganna, Sov. radio, M., 1975

[18] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Springer, New York, 1992 | DOI | MR

[19] P. Khess, Periodichesko-parabolicheskie granichnye zadachi i polozhitelnost, Mir, M., 2001 | MR | Zbl

[20] Y. Du, Order Structure and Topological Methods in Nonlinear Partial Differential Equations, v. 1, Series in Partial Differential Equations and Applications, 2, Maximum Principles and Applications, World Sci., Singapore, 2006 | DOI | MR

[21] N. N. Nefedov, E. I. Nikulin, “O periodicheskikh resheniyakh s pogranichnym sloem v zadache reaktsiya diffuziya s singulyarno vozmuschennymi granichnymi usloviyami tretego roda”, Differents. uravneniya, 56:12 (2020), 1641–1650 | DOI | DOI | MR

[22] B. Jabloński, E. Weinert-Ra̧czka, “The influence of saturation of electron drift velocity on photorefractive effect in GaAs/AlGaAs quantum wells structures”, Optics $\$ Laser Technology, 134:2 (2021), 106617, 7 pp. | DOI

[23] P. Farrell, D. Peschka, “Nonlinear diffusion, boundary layers and nonsmoothness: Analysis of challenges in drift-diffusion semiconductor simulations”, Comput. Math. Appl., 78:12 (2019), 3731–3747 | DOI | MR

[24] M. S. Shur, L. F. Eastman, “I–V characteristics of GaAs MESFET with nonuniform doping profile”, IEEE Trans. Electron Devices, 27:2 (1980), 455–461 | DOI

[25] K. Zeeger, Fizika poluprovodnikov, Mir, M., 1977 | DOI

[26] Yu. V. Bozhevolnov, N. N. Nefedov, “Dvizhenie fronta v parabolicheskoi zadache reaktsiya-diffuziya”, Zh. vychisl. matem. i matem. fiz., 50:2 (2010), 276–285 | DOI | MR