Mots-clés : bifurcation
@article{TMF_2023_215_3_a0,
author = {A. N. Kulikov and D. A. Kulikov},
title = {Local attractors of one of the~original versions of {the~Kuramoto{\textendash}Sivashinsky} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {339--359},
year = {2023},
volume = {215},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a0/}
}
TY - JOUR AU - A. N. Kulikov AU - D. A. Kulikov TI - Local attractors of one of the original versions of the Kuramoto–Sivashinsky equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 339 EP - 359 VL - 215 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a0/ LA - ru ID - TMF_2023_215_3_a0 ER -
A. N. Kulikov; D. A. Kulikov. Local attractors of one of the original versions of the Kuramoto–Sivashinsky equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 3, pp. 339-359. http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a0/
[1] Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer Series in Synergetics, 19, Springer, Berlin, 1984 | DOI | MR
[2] G. I. Sivashinsky, “Weak turbulence in periodic flow”, Phys. D, 17:2 (1985), 243–255 | DOI | MR
[3] C. K. Godunov, Uravneniya matematicheskoi fiziki, Nauka, M., 1979 | MR | MR
[4] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68, Springer, New York, 1997 | DOI | MR
[5] B. Nicolaenko, B. Scheurer, R. Temam, “Some global dynamical properties of the Kuramoto–Sivashinsky equations: nonlinear instability and attractors”, Phys. D, 16:2 (1985), 155–183 | DOI | MR
[6] D. Armbruster, J. Guckenheimer, P. Holmes, “Kuramoto–Sivashinsky dynamics on the center-unstable manifold”, SIAM J. Appl. Math., 49:3 (1989), 676–691 | DOI | MR
[7] M. S. Jolly, I. G. Kevrekidis, E. S. Titi, “Approximate inertial manifolds for the Kuramoto–Sivashinsky equation: analysis and computations”, Phys. D, 44:1–2 (1990), 38–60 | DOI | MR
[8] I. G. Kevrekidis, B. Nicolaenko, J. C. Scovel, “Back in the saddle again: a computer assisted study of the Kuramoto–Sivashinsky equation”, SIAM J. Appl. Math., 50:3 (1990), 760–790 | DOI | MR
[9] N. A. Larkin, “Korteveg–de Vries and Kuramoto–Sivashinsky equations in bounded domain”, J. Math. Anal. Appl., 297:1 (2004), 169–185 | DOI | MR
[10] R. M. Bradley, J. M. E. Harper, “Theory of ripple topography induced by ion bombardment”, J. Vac. Sci. Technol. A, 6 (1988), 2390–2395 | DOI
[11] V. I. Emelyanov, “The Kuramoto–Sivashinsky equation for the defect-deformation instability of a surface-stressed nanolayer”, Laser Phys., 19 (2009), 538–543 | DOI
[12] V. I. Emelyanov, “Defektno-deformatsionnaya neustoichivost kak universalnyi mekhanizm obrazovaniya reshetok i ansamblei nanotochek pri deistvii ionnykh i lazernykh puchkov na tverdye tela”, Izv. RAN. Ser. fiz., 74:2 (2010), 124–130 | DOI | Zbl
[13] N. A. Kudryashov, P. N. Ryabov, T. E. Fedyanin, “Osobennosti samoorganizatsii nanostruktur na poverkhnosti poluprovodnikov pri ionnoi bombardirovke”, Matem. modelirovanie, 24:12 (2012), 23–28
[14] V. I. Rudakov (red.), Kremnievye nanostruktury. Fizika. Tekhnologiya. Modelirovanie, Indigo, Yaroslavl, 2014
[15] B. Barker, M. A. Johnson, P. Noble, L. M. Rodrigues, K. Zumbrun, “Nonlinear modulational stability of periodic traveling-wave solutions of the generalized Kuramoto–Sivashinsky equation”, Phys. D, 258 (2013), 11–46 | DOI | MR
[16] M. P. Gelfand, R. M. Bradley, “One dimensional conservative surface dynamics with broken parity: arrested collapse versus coarsening”, Phys. Lett. A, 379:3 (2015), 199–205 | DOI | MR
[17] C. G. Mikhlin, Kurs matematicheskoi fiziki, Nauka, M., 1968 | MR | Zbl
[18] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | MR | MR | Zbl
[19] Dzh. Marsden, M. Mak-Kraken, Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980 | DOI | MR | MR | Zbl
[20] A. N. Kulikov, “O gladkikh invariantnykh mnogoobraziyakh polugruppy nelineinykh operatorov v banakhovom prostranstve”, Issledovaniya po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1976, 114–129
[21] A. N. Kulikov, D. A. Kulikov, “Formirovanie volnoobraznykh nanostruktur na poverkhnosti ploskikh podlozhek pri ionnoi bombardirovke”, Zh. vychisl. matem. i matem. fiz., 52:5 (2012), 930–945 | DOI | MR
[22] A. N. Kulikov, D. A. Kulikov, “Lokalnye bifurkatsii v uravneniyakh Kana–Khilliarda, Kuramoto–Sivashinskogo i ikh obobscheniyakh”, Zh. vychisl. matem. i matem. fiz., 59:4 (2019), 670–683 | DOI | DOI
[23] A. N. Kulikov, D. A. Kulikov, “Uravnenie Kana–Khilliarda v sluchae dvukh prostranstvennykh peremennykh. Formirovanie patternov”, TMF, 207:3 (2021), 438–457 | DOI | DOI
[24] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl