Local attractors of one of the original versions of the Kuramoto–Sivashinsky equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 3, pp. 339-359
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study two rather similar evolutionary partial differential equations. One of them was obtained by Sivashinsky and the other by Kuramoto. The Kuramoto version was taken as the basic version of the equation that became known as the Kuramoto–Sivashinsky equation. We supplement each version of the Kuramoto–Sivashinsky equation with natural boundary conditions and, for the proposed boundary-value problems, study local bifurcations arising near a homogeneous equilibrium when they change stability. The analysis is based on the methods of the theory of dynamical systems with an infinite-dimensional phase space, namely, the methods of integral manifolds and normal forms. For all boundary-value problems, asymptotic formulas are obtained for solutions that form integral manifolds. We also point out boundary conditions under which the dynamics of solutions of the corresponding boundary-value problems of the two versions of the Kuramoto–Sivashinsky equation are significantly different.
Keywords: Kuramoto–Sivashinsky equation, boundary-value problem, stability, invariant manifold, normal form.
Mots-clés : bifurcation
@article{TMF_2023_215_3_a0,
     author = {A. N. Kulikov and D. A. Kulikov},
     title = {Local attractors of one of the~original versions of {the~Kuramoto{\textendash}Sivashinsky} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {339--359},
     year = {2023},
     volume = {215},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a0/}
}
TY  - JOUR
AU  - A. N. Kulikov
AU  - D. A. Kulikov
TI  - Local attractors of one of the original versions of the Kuramoto–Sivashinsky equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 339
EP  - 359
VL  - 215
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a0/
LA  - ru
ID  - TMF_2023_215_3_a0
ER  - 
%0 Journal Article
%A A. N. Kulikov
%A D. A. Kulikov
%T Local attractors of one of the original versions of the Kuramoto–Sivashinsky equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 339-359
%V 215
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a0/
%G ru
%F TMF_2023_215_3_a0
A. N. Kulikov; D. A. Kulikov. Local attractors of one of the original versions of the Kuramoto–Sivashinsky equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 3, pp. 339-359. http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a0/

[1] Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer Series in Synergetics, 19, Springer, Berlin, 1984 | DOI | MR

[2] G. I. Sivashinsky, “Weak turbulence in periodic flow”, Phys. D, 17:2 (1985), 243–255 | DOI | MR

[3] C. K. Godunov, Uravneniya matematicheskoi fiziki, Nauka, M., 1979 | MR | MR

[4] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68, Springer, New York, 1997 | DOI | MR

[5] B. Nicolaenko, B. Scheurer, R. Temam, “Some global dynamical properties of the Kuramoto–Sivashinsky equations: nonlinear instability and attractors”, Phys. D, 16:2 (1985), 155–183 | DOI | MR

[6] D. Armbruster, J. Guckenheimer, P. Holmes, “Kuramoto–Sivashinsky dynamics on the center-unstable manifold”, SIAM J. Appl. Math., 49:3 (1989), 676–691 | DOI | MR

[7] M. S. Jolly, I. G. Kevrekidis, E. S. Titi, “Approximate inertial manifolds for the Kuramoto–Sivashinsky equation: analysis and computations”, Phys. D, 44:1–2 (1990), 38–60 | DOI | MR

[8] I. G. Kevrekidis, B. Nicolaenko, J. C. Scovel, “Back in the saddle again: a computer assisted study of the Kuramoto–Sivashinsky equation”, SIAM J. Appl. Math., 50:3 (1990), 760–790 | DOI | MR

[9] N. A. Larkin, “Korteveg–de Vries and Kuramoto–Sivashinsky equations in bounded domain”, J. Math. Anal. Appl., 297:1 (2004), 169–185 | DOI | MR

[10] R. M. Bradley, J. M. E. Harper, “Theory of ripple topography induced by ion bombardment”, J. Vac. Sci. Technol. A, 6 (1988), 2390–2395 | DOI

[11] V. I. Emelyanov, “The Kuramoto–Sivashinsky equation for the defect-deformation instability of a surface-stressed nanolayer”, Laser Phys., 19 (2009), 538–543 | DOI

[12] V. I. Emelyanov, “Defektno-deformatsionnaya neustoichivost kak universalnyi mekhanizm obrazovaniya reshetok i ansamblei nanotochek pri deistvii ionnykh i lazernykh puchkov na tverdye tela”, Izv. RAN. Ser. fiz., 74:2 (2010), 124–130 | DOI | Zbl

[13] N. A. Kudryashov, P. N. Ryabov, T. E. Fedyanin, “Osobennosti samoorganizatsii nanostruktur na poverkhnosti poluprovodnikov pri ionnoi bombardirovke”, Matem. modelirovanie, 24:12 (2012), 23–28

[14] V. I. Rudakov (red.), Kremnievye nanostruktury. Fizika. Tekhnologiya. Modelirovanie, Indigo, Yaroslavl, 2014

[15] B. Barker, M. A. Johnson, P. Noble, L. M. Rodrigues, K. Zumbrun, “Nonlinear modulational stability of periodic traveling-wave solutions of the generalized Kuramoto–Sivashinsky equation”, Phys. D, 258 (2013), 11–46 | DOI | MR

[16] M. P. Gelfand, R. M. Bradley, “One dimensional conservative surface dynamics with broken parity: arrested collapse versus coarsening”, Phys. Lett. A, 379:3 (2015), 199–205 | DOI | MR

[17] C. G. Mikhlin, Kurs matematicheskoi fiziki, Nauka, M., 1968 | MR | Zbl

[18] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | MR | MR | Zbl

[19] Dzh. Marsden, M. Mak-Kraken, Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980 | DOI | MR | MR | Zbl

[20] A. N. Kulikov, “O gladkikh invariantnykh mnogoobraziyakh polugruppy nelineinykh operatorov v banakhovom prostranstve”, Issledovaniya po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1976, 114–129

[21] A. N. Kulikov, D. A. Kulikov, “Formirovanie volnoobraznykh nanostruktur na poverkhnosti ploskikh podlozhek pri ionnoi bombardirovke”, Zh. vychisl. matem. i matem. fiz., 52:5 (2012), 930–945 | DOI | MR

[22] A. N. Kulikov, D. A. Kulikov, “Lokalnye bifurkatsii v uravneniyakh Kana–Khilliarda, Kuramoto–Sivashinskogo i ikh obobscheniyakh”, Zh. vychisl. matem. i matem. fiz., 59:4 (2019), 670–683 | DOI | DOI

[23] A. N. Kulikov, D. A. Kulikov, “Uravnenie Kana–Khilliarda v sluchae dvukh prostranstvennykh peremennykh. Formirovanie patternov”, TMF, 207:3 (2021), 438–457 | DOI | DOI

[24] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl