Keywords: discontinuous sources, asymptotic approximation, method of differential inequalities, upper and lower solutions, Lyapunov stability, Krein–Rutman theorem.
@article{TMF_2023_215_2_a9,
author = {N. N. Nefedov and A. O. Orlov},
title = {On unstable contrast structures in one-dimensional reaction{\textendash}diffusion{\textendash}advection problems with discontinuous sources},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {297--310},
year = {2023},
volume = {215},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a9/}
}
TY - JOUR AU - N. N. Nefedov AU - A. O. Orlov TI - On unstable contrast structures in one-dimensional reaction–diffusion–advection problems with discontinuous sources JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 297 EP - 310 VL - 215 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a9/ LA - ru ID - TMF_2023_215_2_a9 ER -
%0 Journal Article %A N. N. Nefedov %A A. O. Orlov %T On unstable contrast structures in one-dimensional reaction–diffusion–advection problems with discontinuous sources %J Teoretičeskaâ i matematičeskaâ fizika %D 2023 %P 297-310 %V 215 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a9/ %G ru %F TMF_2023_215_2_a9
N. N. Nefedov; A. O. Orlov. On unstable contrast structures in one-dimensional reaction–diffusion–advection problems with discontinuous sources. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 297-310. http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a9/
[1] N. N. Nefedov, “Razvitie metodov asimptoticheskogo analiza perekhodnykh sloev v uravneniyakh reaktsii-diffuzii-advektsii: teoriya i primenenie”, Zh. vychisl. matem. i matem. fiz., 61:12 (2021), 2074–2094 | DOI | DOI
[2] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR | Zbl
[3] A. B. Vasileva, “Ob ustoichivosti kontrastnykh struktur”, Matem. modelirovanie, 3:4 (1991), 114–123 | MR | Zbl
[4] A. B. Vasileva, “K voprosu ob ustoichivosti reshenii tipa kontrastnykh struktur”, Matem. modelirovanie, 2:1 (1990), 119–125 | MR | Zbl
[5] J. K. Hale, K. Sakamoto, “Existence and stability of transition layers”, Japan J. Appl. Math., 5:3 (1988), 367–405 | DOI | MR
[6] D. Khenri, Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | DOI | MR | MR | Zbl | Zbl
[7] N. N. Nefedov, M. K. Ni, “Vnutrennie sloi v odnomernom uravnenii reaktsiya–diffuziya s razryvnym reaktivnym chlenom”, Zh. vychisl. matem. i matem. fiz., 55:12 (2015), 2042–2048 | DOI | DOI | MR
[8] N. N. Nefedov, N. T. Levashova, A. O. Orlov, “Asimptoticheskaya ustoichivost statsionarnogo resheniya s vnutrennim perekhodnym sloem zadachi reaktsiya-diffuziya s razryvnym reaktivnym slagaemym”, Vestn. Mosk. un-ta. Ser. 3. Fiz. Astron., 6 (2018), 3–10
[9] N. T. Levashova, N. N. Nefedov, A. O. Orlov, “Asimptoticheskaya ustoichivost statsionarnogo resheniya mnogomernogo uravneniya reaktsiya–diffuziya s razryvnym reaktivnym istochnikom”, Zh. vychisl. matem. i matem. fiz., 59:4 (2019), 611–620 | DOI | DOI | MR
[10] N. N. Nefedov, “Comparison principle for reaction-diffusion-advection problems with boundary and internal layers”, Numerical Analysis and Its Applications, 5th International Conference, NAA 2012, Revised Selected Papers (Lozenetz, Bulgaria, June 15–20, 2012), Lecture Notes in Computer Science, 8236, Springer, Berlin, 2013, 62–72 | DOI | MR
[11] N. N. Nefedov, E. I. Nikulin, “O neustoichivykh resheniyakh s nemonotonnym pogranichnym sloem v dvumernoi zadache reaktsiya-diffuziya”, Matem. zametki, 110:6 (2021), 899–910 | DOI | DOI
[12] N. N. Nefedov, E. I. Nikulin, “O periodicheskikh resheniyakh s pogranichnym sloem v zadache reaktsiya–diffuziya s singulyarno vozmuschennymi granichnymi usloviyami tretego roda”, Differents. uravneniya, 56:12 (2020), 1641–1650 | DOI | DOI
[13] N. N. Nefedov, E. I. Nikulin, A. O. Orlov, “Contrast structures in the reaction-diffusion-advection problem in the case of a weak reaction discontinuity”, Russ. J. Math. Phys., 29:1 (2022), 81–90 | DOI | MR
[14] N. N. Nefedov, “Metod differentsialnykh neravenstv dlya nekotorykh klassov singulyarno vozmuschennykh uravnenii v chastnykh proizvodnykh”, Differents. uravneniya, 31:4 (1995), 719–723 | MR
[15] N. V. Krylov, Nelineinye ellipticheskie i parabolicheskie uravneniya vtorogo poryadka, Nauka, M., 1985 | MR | MR | Zbl
[16] V. N. Pavlenko, O. V. Ulyanova, “Metod verkhnikh i nizhnikh reshenii dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami”, Izv. vuzov. Matem., 1998, no. 11, 69–76 | MR | Zbl
[17] M. G. Lepchinskii, V. N. Pavlenko, “Pravilnye resheniya ellipticheskikh kraevykh zadach s razryvnymi nelineinostyami”, Algebra i analiz, 17:3 (2005), 124–138 | DOI | MR | Zbl
[18] N. N. Nefedov, E. I. Nikulin, A. O. Orlov, “Existence of contrast structures in a problem with discontinuous reaction and advection”, Russ. J. Math. Phys., 29:2 (2022), 214–224 | DOI | MR
[19] Ya Fei Pan, Min Kan Ni, M. A. Davydova, “Kontrastnye struktury v zadachakh dlya statsionarnogo uravneniya reaktsiya–diffuziya–advektsiya s razryvnoi nelineinostyu”, Matem. zametki, 104:5 (2018), 755–766 | DOI | DOI | MR