Variational formulation of the problem on vibrations of a beam with a moving spring-loaded support
Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 289-296 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We pose the problem of vibrations of a beam with a moving spring-loaded support carrying an attached mass. When the support is not absolutely rigid, energy exchange occurs through the moving boundary. As a result, there is a difficulty in writing the boundary conditions. To pose the problem, we use Hamilton's variational principle and take the viscoelastic properties of the beam material into account. The problem posed includes a differential equation for vibrations, initial conditions for a bent axis of the beam and for the added mass, and boundary conditions. The conditions on the moving boundary are written as ratios between the values of the function and its derivatives to the left and right of the boundary.
Keywords: oscillations of a beam with a moving spring support, boundary condition, variational principle.
@article{TMF_2023_215_2_a8,
     author = {V. L. Litvinov},
     title = {Variational formulation of the~problem on vibrations of a~beam with a~moving spring-loaded support},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {289--296},
     year = {2023},
     volume = {215},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a8/}
}
TY  - JOUR
AU  - V. L. Litvinov
TI  - Variational formulation of the problem on vibrations of a beam with a moving spring-loaded support
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 289
EP  - 296
VL  - 215
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a8/
LA  - ru
ID  - TMF_2023_215_2_a8
ER  - 
%0 Journal Article
%A V. L. Litvinov
%T Variational formulation of the problem on vibrations of a beam with a moving spring-loaded support
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 289-296
%V 215
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a8/
%G ru
%F TMF_2023_215_2_a8
V. L. Litvinov. Variational formulation of the problem on vibrations of a beam with a moving spring-loaded support. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 289-296. http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a8/

[1] Y.-J. Shi, L.-L. Wu, Y.-Q. Wang, “Analysis on nonlinear natural frequencies of cable net”, J. Vib. Eng., 19:2 (2006), 173–178

[2] V. N. Anisimov, V. L. Litvinov, “Issledovanie rezonansnykh svoistv mekhanicheskikh ob'ektov s dvizhuschimisya granitsami pri pomoschi metoda Kantorovicha–Galerkina”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2009, no. 1(18), 149–158 | DOI

[3] V. N. Anisimov, I. V. Korpen, V. L. Litvinov,, “Primenenie metoda Kantorovicha–Galerkina dlya resheniya kraevykh zadach s usloviyami na dvizhuschikhsya granitsakh”, Izv. RAN. MTT, 2018, no. 2, 70–77 | DOI

[4] A. Berlioz, C.-H. Lamarque, “A non-linear model for the dynamics of an inclined cable”, J. Sound Vib., 279:3–5 (2005), 619–639 | DOI

[5] S. H. Sandilo, W. T. van Horssen, “On variable length induced vibrations of a vertical string”, J. Sound Vib., 333:11 (2014), 2432–2449 | DOI

[6] L. Faravelli, C. Fuggini, F. Ubertini, “Toward a hybrid control solution for cable dynamics: Theoretical prediction and experimental validation”, Struct. Control Health Monit., 17:4 (2010), 386–403 | DOI

[7] V. L. Litvinov, “Reshenie kraevykh zadach s dvizhuschimisya granitsami pri pomoschi priblizhennogo metoda postroeniya reshenii integro-differentsialnykh uravnenii”, Tr. IMM UrO RAN, 26, no. 2, 2020, 188–199 | DOI

[8] V. N. Anisimov, V. L. Litvinov, “Poperechnye kolebaniya kanata, dvizhuschegosya v prodolnom napravlenii”, Izv. Samar. nauchn. tsentra RAN, 19:4 (2017), 161–166

[9] J. M. Boyle, Jr., B. Bhushan, “Vibration modeling of magnetic tape with vibro-impact of tape-guide contact”, J. Sound Vibr., 289:3 (2006), 632–655 | DOI

[10] O. Inácio, J. Antunes, M. C. M. Wright, “Computational modelling of string-body interaction for the violin family and simulation of wolf notes”, J. Sound Vibr., 310:1–2 (2008), 260–286 | DOI

[11] C. Nakagawa, R. Shimamune, K. Watanabe, E. Suzuki, “Fundamental study on the effect of high-frequency vibration in the vertical and lateral directions on ride comfort”, Quarterly Report of RTRI, 51:2 (2010), 101–104 | DOI

[12] W. D. Zhu, N. A. Zheng, “Exact response of a translating string with arbitrarily varying length under general excitation”, J. Appl. Mech., 75:3 (2008), 031003, 14 pp. | DOI

[13] M. R. Brake, J. A. Wickert, “Frictional vibration transmission from a laterally moving surface to a traveling beam”, J. Sound Vibr., 310:3 (2008), 663–675 | DOI

[14] H. Ding, L.-Q. Chen, “Galerkin methods for natural frequencies of high-speed axially moving beams”, J. Sound Vibr., 329:17 (2010), 3484–3494 | DOI

[15] L. Sun, F. Luo, “Steady-state dynamic response of a Bernoulli–Euler beam on a viscoelastic foundation subject to a platoon of moving dynamic loads”, J. Vibr. Acoust., 130:5 (2008), 051002, 9 pp. | DOI

[16] Y.-F. Teng, N.-G. Teng, X.-J. Kou, “Vibration analysis of maglev three-span continuous guideway considering control system”, J. Zhejiang Univ. Sci. A, 9:1 (2008), 8–14 | DOI

[17] S. M. Sahebkar, M. R. Ghazavi, S. E. Khadem, M. H. Ghayesh, “Nonlinear vibration analysis of an axially moving drillstring system with time dependent axial load and axial velocity in inclined well”, Mech. Mach. Theory., 46:5 (2011), 743–760 | DOI

[18] Y. H. Cho, “Numerical simulation of the dynamic responses of railway overhead contact lines to a moving pantograph, considering a nonlinear dropper”, J. Sound Vibr., 315:3 (2008), 433–454 | DOI

[19] J. Ryue, D. J. Thompson, P. R. White, D. R. Thompson, “Decay rates of propagating waves in railway tracks at high frequencies”, J. Sound Vibr., 320:4–5 (2009), 955–976 | DOI

[20] L. Wang, Y. Zhao, “Multiple internal resonances and non–planar dynamics of shallow suspended cables to the harmonic excitations”, J. Sound Vibr., 319:1–2 (2008), 1–14 | DOI

[21] Y. Zhao, L. Wang, “On the symmetric modal interaction of the suspended cable: Three-to-one internal resonance”, J. Sound Vibr., 294:4–5 (2006), 1073–1093 | DOI

[22] W. Zhang, Y. Tang, “Global dynamics of the cable under combined parametrical and external excitations”, Internat. J. Non-Linear Mech., 37:3 (2002), 505–526 | DOI

[23] V. N. Anisimov, V. L. Litvinov, I. V. Korpen, “Ob odnom metode polucheniya analiticheskogo resheniya volnovogo uravneniya, opisyvayuschego kolebaniya sistem s dvizhuschimisya granitsami”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2012, no. 3(28), 145–151 | DOI | MR | Zbl

[24] V. L. Litvinov, K. V. Litvinova, “Priblizhennyi metod resheniya kraevykh zadach s podvizhnymi granitsami putem svedeniya k integrodifferentsialnym uravneniyam”, Zh. vychisl. matem. i matem. fiz., 62:6 (2022), 977–986 | DOI | DOI

[25] B. Yagci, S. Filiz, L. L. Romero, O. B. Ozdoganlar, “A spectral-Tchebychev technique for solving linear and nonlinear beam equations”, J. Sound Vibr., 321:1–2 (2009), 375–404 | DOI

[26] Z.-J. Liu, G.-P. Chen, “Planar non-linear free vibration analysis of stay cable considering the effects of flexural rigidity”, J. Vibr. Eng., 20:1 (2007), 57–60

[27] K. Lantsosh, Variatsionnye printsipy mekhaniki, Fizmatgiz, M., 1965 | MR