@article{TMF_2023_215_2_a8,
author = {V. L. Litvinov},
title = {Variational formulation of the~problem on vibrations of a~beam with a~moving spring-loaded support},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {289--296},
year = {2023},
volume = {215},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a8/}
}
TY - JOUR AU - V. L. Litvinov TI - Variational formulation of the problem on vibrations of a beam with a moving spring-loaded support JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 289 EP - 296 VL - 215 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a8/ LA - ru ID - TMF_2023_215_2_a8 ER -
V. L. Litvinov. Variational formulation of the problem on vibrations of a beam with a moving spring-loaded support. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 289-296. http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a8/
[1] Y.-J. Shi, L.-L. Wu, Y.-Q. Wang, “Analysis on nonlinear natural frequencies of cable net”, J. Vib. Eng., 19:2 (2006), 173–178
[2] V. N. Anisimov, V. L. Litvinov, “Issledovanie rezonansnykh svoistv mekhanicheskikh ob'ektov s dvizhuschimisya granitsami pri pomoschi metoda Kantorovicha–Galerkina”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2009, no. 1(18), 149–158 | DOI
[3] V. N. Anisimov, I. V. Korpen, V. L. Litvinov,, “Primenenie metoda Kantorovicha–Galerkina dlya resheniya kraevykh zadach s usloviyami na dvizhuschikhsya granitsakh”, Izv. RAN. MTT, 2018, no. 2, 70–77 | DOI
[4] A. Berlioz, C.-H. Lamarque, “A non-linear model for the dynamics of an inclined cable”, J. Sound Vib., 279:3–5 (2005), 619–639 | DOI
[5] S. H. Sandilo, W. T. van Horssen, “On variable length induced vibrations of a vertical string”, J. Sound Vib., 333:11 (2014), 2432–2449 | DOI
[6] L. Faravelli, C. Fuggini, F. Ubertini, “Toward a hybrid control solution for cable dynamics: Theoretical prediction and experimental validation”, Struct. Control Health Monit., 17:4 (2010), 386–403 | DOI
[7] V. L. Litvinov, “Reshenie kraevykh zadach s dvizhuschimisya granitsami pri pomoschi priblizhennogo metoda postroeniya reshenii integro-differentsialnykh uravnenii”, Tr. IMM UrO RAN, 26, no. 2, 2020, 188–199 | DOI
[8] V. N. Anisimov, V. L. Litvinov, “Poperechnye kolebaniya kanata, dvizhuschegosya v prodolnom napravlenii”, Izv. Samar. nauchn. tsentra RAN, 19:4 (2017), 161–166
[9] J. M. Boyle, Jr., B. Bhushan, “Vibration modeling of magnetic tape with vibro-impact of tape-guide contact”, J. Sound Vibr., 289:3 (2006), 632–655 | DOI
[10] O. Inácio, J. Antunes, M. C. M. Wright, “Computational modelling of string-body interaction for the violin family and simulation of wolf notes”, J. Sound Vibr., 310:1–2 (2008), 260–286 | DOI
[11] C. Nakagawa, R. Shimamune, K. Watanabe, E. Suzuki, “Fundamental study on the effect of high-frequency vibration in the vertical and lateral directions on ride comfort”, Quarterly Report of RTRI, 51:2 (2010), 101–104 | DOI
[12] W. D. Zhu, N. A. Zheng, “Exact response of a translating string with arbitrarily varying length under general excitation”, J. Appl. Mech., 75:3 (2008), 031003, 14 pp. | DOI
[13] M. R. Brake, J. A. Wickert, “Frictional vibration transmission from a laterally moving surface to a traveling beam”, J. Sound Vibr., 310:3 (2008), 663–675 | DOI
[14] H. Ding, L.-Q. Chen, “Galerkin methods for natural frequencies of high-speed axially moving beams”, J. Sound Vibr., 329:17 (2010), 3484–3494 | DOI
[15] L. Sun, F. Luo, “Steady-state dynamic response of a Bernoulli–Euler beam on a viscoelastic foundation subject to a platoon of moving dynamic loads”, J. Vibr. Acoust., 130:5 (2008), 051002, 9 pp. | DOI
[16] Y.-F. Teng, N.-G. Teng, X.-J. Kou, “Vibration analysis of maglev three-span continuous guideway considering control system”, J. Zhejiang Univ. Sci. A, 9:1 (2008), 8–14 | DOI
[17] S. M. Sahebkar, M. R. Ghazavi, S. E. Khadem, M. H. Ghayesh, “Nonlinear vibration analysis of an axially moving drillstring system with time dependent axial load and axial velocity in inclined well”, Mech. Mach. Theory., 46:5 (2011), 743–760 | DOI
[18] Y. H. Cho, “Numerical simulation of the dynamic responses of railway overhead contact lines to a moving pantograph, considering a nonlinear dropper”, J. Sound Vibr., 315:3 (2008), 433–454 | DOI
[19] J. Ryue, D. J. Thompson, P. R. White, D. R. Thompson, “Decay rates of propagating waves in railway tracks at high frequencies”, J. Sound Vibr., 320:4–5 (2009), 955–976 | DOI
[20] L. Wang, Y. Zhao, “Multiple internal resonances and non–planar dynamics of shallow suspended cables to the harmonic excitations”, J. Sound Vibr., 319:1–2 (2008), 1–14 | DOI
[21] Y. Zhao, L. Wang, “On the symmetric modal interaction of the suspended cable: Three-to-one internal resonance”, J. Sound Vibr., 294:4–5 (2006), 1073–1093 | DOI
[22] W. Zhang, Y. Tang, “Global dynamics of the cable under combined parametrical and external excitations”, Internat. J. Non-Linear Mech., 37:3 (2002), 505–526 | DOI
[23] V. N. Anisimov, V. L. Litvinov, I. V. Korpen, “Ob odnom metode polucheniya analiticheskogo resheniya volnovogo uravneniya, opisyvayuschego kolebaniya sistem s dvizhuschimisya granitsami”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2012, no. 3(28), 145–151 | DOI | MR | Zbl
[24] V. L. Litvinov, K. V. Litvinova, “Priblizhennyi metod resheniya kraevykh zadach s podvizhnymi granitsami putem svedeniya k integrodifferentsialnym uravneniyam”, Zh. vychisl. matem. i matem. fiz., 62:6 (2022), 977–986 | DOI | DOI
[25] B. Yagci, S. Filiz, L. L. Romero, O. B. Ozdoganlar, “A spectral-Tchebychev technique for solving linear and nonlinear beam equations”, J. Sound Vibr., 321:1–2 (2009), 375–404 | DOI
[26] Z.-J. Liu, G.-P. Chen, “Planar non-linear free vibration analysis of stay cable considering the effects of flexural rigidity”, J. Vibr. Eng., 20:1 (2007), 57–60
[27] K. Lantsosh, Variatsionnye printsipy mekhaniki, Fizmatgiz, M., 1965 | MR