Stability of a stationary solution of a system of activator–inhibitor-type equations with a double-scale internal transition layer
Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 269-288 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study boundary value problems for systems of second-order ordinary differential equations with quasimonotonicity conditions typical of problems of activator–inhibitor type and with solutions containing domains with large gradients. We obtain sufficient conditions for the existence of a stable stationary solution. Using the asymptotic method of differential inequalities, we prove the existence and stability theorems.
Keywords: internal transition layer, method of differential inequalities, upper and lower solutions, asymptotic approximation, quasimonotonicity conditions.
@article{TMF_2023_215_2_a7,
     author = {N. T. Levashova and D. S. Samsonov},
     title = {Stability of a~stationary solution of a~system of activator{\textendash}inhibitor-type equations with a~double-scale internal transition layer},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {269--288},
     year = {2023},
     volume = {215},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a7/}
}
TY  - JOUR
AU  - N. T. Levashova
AU  - D. S. Samsonov
TI  - Stability of a stationary solution of a system of activator–inhibitor-type equations with a double-scale internal transition layer
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 269
EP  - 288
VL  - 215
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a7/
LA  - ru
ID  - TMF_2023_215_2_a7
ER  - 
%0 Journal Article
%A N. T. Levashova
%A D. S. Samsonov
%T Stability of a stationary solution of a system of activator–inhibitor-type equations with a double-scale internal transition layer
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 269-288
%V 215
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a7/
%G ru
%F TMF_2023_215_2_a7
N. T. Levashova; D. S. Samsonov. Stability of a stationary solution of a system of activator–inhibitor-type equations with a double-scale internal transition layer. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 269-288. http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a7/

[1] N. T. Levashova, A. A. Melnikova, D. V. Lukyanenko, A. E. Sidorova, S. V. Bytsyura, “Modelirovanie urboekosistem kak protsessov samoorganizatsii”, Matem. modelirovanie, 29:11 (2017), 40–52 | MR | Zbl

[2] A. E. Sidorova, N. T. Levashova, A. E. Semina, “Avtovolnovaya model morfogeneza megapolisov v predstavleniyakh neodnorodnykh aktivnykh sred”, Izv. RAN. Ser. fiz., 83:1 (2019), 106–112 | DOI | DOI

[3] N. T. Levashova, B. V. Tischenko, “Suschestvovanie i ustoichivost resheniya sistemy dvukh nelineinykh uravnenii diffuzii v srede s razryvnymi kharakteristikami”, Zh. vychisl. matem. i matem. fiz., 61:11 (2021), 1850–1872 | DOI | DOI | MR

[4] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992 | MR

[5] N. N. Nefedov, “Metod differentsialnykh neravenstv dlya nekotorykh klassov nelineinykh singulyarno vozmuschennykh zadach s vnutrennimi sloyami”, Differents. uravneniya, 31:7 (1995), 1142–1149 | MR | Zbl

[6] N. N. Nefedov, “Razvitie metodov asimptoticheskogo analiza perekhodnykh sloev v uravneniyakh reaktsii–diffuzii–advektsii: teoriya i primenenie”, Zh. vychisl. matem. i matem. fiz., 61:12 (2021), 2074–2094 | DOI | DOI

[7] V. F. Butuzov, N. T. Levashova, A A. Melnikova, “Kontrastnaya struktura tipa stupenki v singulyarno vozmuschennoi sisteme uravnenii s razlichnymi stepenyami malogo parametra”, Zh. vychisl. matem. i matem. fiz., 52:11 (2012), 1983–2003 | DOI | MR

[8] P. C. Fife, J. B. McLeod, “The approach of solutions of nonlinear diffusion equations to travelling front solutions”, Arch. Rational Mech. Anal., 65:4 (1977), 335–361 | DOI

[9] A. I. Volpert, V. A. Volpert, Vl. A. Volpert, Traveling Wave Solutions of Parabolic Systems, Translations of Mathematical Monographs, 140, AMS, Providence, RI, 1994 | DOI | MR

[10] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teopii singulyapnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR

[11] B. V. Tischenko, “Suschestvovanie, lokalnaya edinstvennost i asimptoticheskaya ustoichivost pogransloinogo resheniya kraevoi zadachi Neimana dlya sistemy dvukh nelineinykh uravnenii s raznymi stepenyami malogo parametra”, Vestn. Mosk. un-ta. Ser. 3. Fiz. Astron., 2021, no. 5, 44–50 | DOI

[12] N. T. Levashova, B. V. Tischenko, “Suschestvovanie i ustoichivost statsionarnogo resheniya sistemy uravnenii diffuzii v srede s razryvnymi kharakteristikami pri razlichnykh usloviyakh kvazimonotonnosti”, TMF, 212:1 (2022), 62–82 | DOI | DOI

[13] D. V. Lukyanenko, M. A. Shishlenin, V. T. Volkov, “Solving of the coefficient inverse problems for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time data”, Commun. Nonlinear Sci. Numer. Simul., 54 (2018), 233–247 | DOI | MR

[14] D. V. Lukyanenko, M. A. Shishlenin, V. T. Volkov, “Asymptotic analysis of solving an inverse boundary value problem for a nonlinear singularly perturbed time-periodic reaction-diffusion-advection equation”, J. Inverse Ill-Posed Probl., 27:5 (2019), 745–758 | DOI | MR