@article{TMF_2023_215_2_a7,
author = {N. T. Levashova and D. S. Samsonov},
title = {Stability of a~stationary solution of a~system of activator{\textendash}inhibitor-type equations with a~double-scale internal transition layer},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {269--288},
year = {2023},
volume = {215},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a7/}
}
TY - JOUR AU - N. T. Levashova AU - D. S. Samsonov TI - Stability of a stationary solution of a system of activator–inhibitor-type equations with a double-scale internal transition layer JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 269 EP - 288 VL - 215 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a7/ LA - ru ID - TMF_2023_215_2_a7 ER -
%0 Journal Article %A N. T. Levashova %A D. S. Samsonov %T Stability of a stationary solution of a system of activator–inhibitor-type equations with a double-scale internal transition layer %J Teoretičeskaâ i matematičeskaâ fizika %D 2023 %P 269-288 %V 215 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a7/ %G ru %F TMF_2023_215_2_a7
N. T. Levashova; D. S. Samsonov. Stability of a stationary solution of a system of activator–inhibitor-type equations with a double-scale internal transition layer. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 269-288. http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a7/
[1] N. T. Levashova, A. A. Melnikova, D. V. Lukyanenko, A. E. Sidorova, S. V. Bytsyura, “Modelirovanie urboekosistem kak protsessov samoorganizatsii”, Matem. modelirovanie, 29:11 (2017), 40–52 | MR | Zbl
[2] A. E. Sidorova, N. T. Levashova, A. E. Semina, “Avtovolnovaya model morfogeneza megapolisov v predstavleniyakh neodnorodnykh aktivnykh sred”, Izv. RAN. Ser. fiz., 83:1 (2019), 106–112 | DOI | DOI
[3] N. T. Levashova, B. V. Tischenko, “Suschestvovanie i ustoichivost resheniya sistemy dvukh nelineinykh uravnenii diffuzii v srede s razryvnymi kharakteristikami”, Zh. vychisl. matem. i matem. fiz., 61:11 (2021), 1850–1872 | DOI | DOI | MR
[4] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992 | MR
[5] N. N. Nefedov, “Metod differentsialnykh neravenstv dlya nekotorykh klassov nelineinykh singulyarno vozmuschennykh zadach s vnutrennimi sloyami”, Differents. uravneniya, 31:7 (1995), 1142–1149 | MR | Zbl
[6] N. N. Nefedov, “Razvitie metodov asimptoticheskogo analiza perekhodnykh sloev v uravneniyakh reaktsii–diffuzii–advektsii: teoriya i primenenie”, Zh. vychisl. matem. i matem. fiz., 61:12 (2021), 2074–2094 | DOI | DOI
[7] V. F. Butuzov, N. T. Levashova, A A. Melnikova, “Kontrastnaya struktura tipa stupenki v singulyarno vozmuschennoi sisteme uravnenii s razlichnymi stepenyami malogo parametra”, Zh. vychisl. matem. i matem. fiz., 52:11 (2012), 1983–2003 | DOI | MR
[8] P. C. Fife, J. B. McLeod, “The approach of solutions of nonlinear diffusion equations to travelling front solutions”, Arch. Rational Mech. Anal., 65:4 (1977), 335–361 | DOI
[9] A. I. Volpert, V. A. Volpert, Vl. A. Volpert, Traveling Wave Solutions of Parabolic Systems, Translations of Mathematical Monographs, 140, AMS, Providence, RI, 1994 | DOI | MR
[10] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teopii singulyapnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR
[11] B. V. Tischenko, “Suschestvovanie, lokalnaya edinstvennost i asimptoticheskaya ustoichivost pogransloinogo resheniya kraevoi zadachi Neimana dlya sistemy dvukh nelineinykh uravnenii s raznymi stepenyami malogo parametra”, Vestn. Mosk. un-ta. Ser. 3. Fiz. Astron., 2021, no. 5, 44–50 | DOI
[12] N. T. Levashova, B. V. Tischenko, “Suschestvovanie i ustoichivost statsionarnogo resheniya sistemy uravnenii diffuzii v srede s razryvnymi kharakteristikami pri razlichnykh usloviyakh kvazimonotonnosti”, TMF, 212:1 (2022), 62–82 | DOI | DOI
[13] D. V. Lukyanenko, M. A. Shishlenin, V. T. Volkov, “Solving of the coefficient inverse problems for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time data”, Commun. Nonlinear Sci. Numer. Simul., 54 (2018), 233–247 | DOI | MR
[14] D. V. Lukyanenko, M. A. Shishlenin, V. T. Volkov, “Asymptotic analysis of solving an inverse boundary value problem for a nonlinear singularly perturbed time-periodic reaction-diffusion-advection equation”, J. Inverse Ill-Posed Probl., 27:5 (2019), 745–758 | DOI | MR