On the~problem of classifying integrable chains with three independent variables
Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 242-268

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss a new method for the classification of integrable nonlinear chains with three independent variables using an example of chains in the form $u^j_{n+1,x}=u^j_{n,x}+f(u^{j+1}_{n},u^{j}_n,u^j_{n+1 },u^{j-1}_{n+1})$. This method is based on reductions having the form of systems of differential–difference Darboux-integrable equations. It is well known that the characteristic algebras of Darboux-integrable systems have a finite dimension. The structure of the characteristic algebra is defined by some polynomial $P(\lambda)$. The polynomial degree for the known integrable chains from the class under consideration equals $2$ or $3$. A partial classification is performed in the case $\deg P(\lambda)=2$.
Keywords: three-dimensional chains, characteristic algebras, Darboux integrability, characteristic integrals, integrable reductions.
@article{TMF_2023_215_2_a6,
     author = {M. N. Kuznetsova and I. T. Habibullin and A. R. Khakimova},
     title = {On the~problem of classifying integrable chains with three independent variables},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {242--268},
     publisher = {mathdoc},
     volume = {215},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a6/}
}
TY  - JOUR
AU  - M. N. Kuznetsova
AU  - I. T. Habibullin
AU  - A. R. Khakimova
TI  - On the~problem of classifying integrable chains with three independent variables
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 242
EP  - 268
VL  - 215
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a6/
LA  - ru
ID  - TMF_2023_215_2_a6
ER  - 
%0 Journal Article
%A M. N. Kuznetsova
%A I. T. Habibullin
%A A. R. Khakimova
%T On the~problem of classifying integrable chains with three independent variables
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 242-268
%V 215
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a6/
%G ru
%F TMF_2023_215_2_a6
M. N. Kuznetsova; I. T. Habibullin; A. R. Khakimova. On the~problem of classifying integrable chains with three independent variables. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 242-268. http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a6/