On the problem of classifying integrable chains with three independent variables
Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 242-268 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss a new method for the classification of integrable nonlinear chains with three independent variables using an example of chains in the form $u^j_{n+1,x}=u^j_{n,x}+f(u^{j+1}_{n},u^{j}_n,u^j_{n+1 },u^{j-1}_{n+1})$. This method is based on reductions having the form of systems of differential–difference Darboux-integrable equations. It is well known that the characteristic algebras of Darboux-integrable systems have a finite dimension. The structure of the characteristic algebra is defined by some polynomial $P(\lambda)$. The polynomial degree for the known integrable chains from the class under consideration equals $2$ or $3$. A partial classification is performed in the case $\deg P(\lambda)=2$.
Keywords: three-dimensional chains, characteristic algebras, Darboux integrability, characteristic integrals, integrable reductions.
@article{TMF_2023_215_2_a6,
     author = {M. N. Kuznetsova and I. T. Habibullin and A. R. Khakimova},
     title = {On the~problem of classifying integrable chains with three independent variables},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {242--268},
     year = {2023},
     volume = {215},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a6/}
}
TY  - JOUR
AU  - M. N. Kuznetsova
AU  - I. T. Habibullin
AU  - A. R. Khakimova
TI  - On the problem of classifying integrable chains with three independent variables
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 242
EP  - 268
VL  - 215
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a6/
LA  - ru
ID  - TMF_2023_215_2_a6
ER  - 
%0 Journal Article
%A M. N. Kuznetsova
%A I. T. Habibullin
%A A. R. Khakimova
%T On the problem of classifying integrable chains with three independent variables
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 242-268
%V 215
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a6/
%G ru
%F TMF_2023_215_2_a6
M. N. Kuznetsova; I. T. Habibullin; A. R. Khakimova. On the problem of classifying integrable chains with three independent variables. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 242-268. http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a6/

[1] E. K. Sklyanin, “Granichnye usloviya dlya integriruemykh uravnenii”, Funkts. analiz i ego pril., 21:2 (1987), 86–87 | DOI | MR | Zbl

[2] I. T. Habibullin, “Boundary conditions for integrable chains”, Phys. Lett. A, 207:5 (1995), 263–268 | DOI | MR

[3] Yu. M. Berezanskii, “Integrirovanie nelineinykh raznostnykh uravnenii metodom obratnoi spektralnoi zadachi”, Dokl. AN SSSR, 281:1 (1985), 16–19 | MR | Zbl

[4] V. E. Adler, A. B. Shabat, “O nekotorykh tochnykh resheniyakh tsepochki Volterra”, TMF, 201:1 (2019), 37–53 | DOI | DOI | MR

[5] I. M. Krichever, “Nelineinye uravneniya i ellipticheskie krivye”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem., 23, VINITI, M., 1983, 79–136 | DOI | MR | Zbl

[6] J. Moser, “Finitely many mass points on the line under the influence of an exponential potential – an integrable system”, Dynamical Systems, Theory and Applications (Battelle Rencontres, Seattle, WA, USA, 1974), Lecture Notes in Physics, 38, Springer, Berlin, Heidelberg, 1975, 467–497 | DOI | MR

[7] G. Darboux, Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, v. 1–4, Gauthier-Villars, Paris, 1896 | MR

[8] E. I. Ganzha, S. P. Tsarev, Integrirovanie klassicheskikh ryadov $A_n$, $B_n$, $C_n$ eksponentsialnykh sistem, KGPU, Krasnoyarsk, 2001

[9] A. V. Mikhailov, M. A. Olshanetsky, A. M. Perelomov, “Two-dimensional generalized Toda lattice”, Commun. Math. Phys., 79:4 (1981), 473–488 | DOI | MR

[10] A. B. Shabat, R. I. Yamilov, Eksponentsialnye sistemy tipa I i matritsy Kartana, Preprint doklada Prezidiumu Bashkirskogo filiala AN SSSR, BFAN SSSR, Ufa, 1981

[11] A. N. Leznov, V. G. Smirnov, A. B. Shabat, “Gruppa vnutrennikh simmetrii i usloviya integriruemosti dvumernykh dinamicheskikh sistem”, TMF, 51:1 (1982), 10–21 | DOI | MR | Zbl

[12] V. G. Drinfeld, V. V. Sokolov, “Uravneniya tipa Kortevega–de Friza i prostye algebry Li”, Dokl. AN SSSR, 258:1 (1981), 11–16 | MR | Zbl

[13] M. N. Poptsova, I. T. Khabibullin, “Algebraicheskie svoistva kvazilineinykh dvumerizovannykh tsepochek, svyazannye s integriruemostyu”, Ufimsk. matem. zhurn., 10:3 (2018), 89–109 | DOI | MR

[14] A. B. Shabat, R. I. Yamilov, “To a transformation theory of two-dimensional integrable systems”, Phys. Lett. A, 227:1–2 (1997), 15–23 | DOI | MR

[15] M. N. Kuznetsova, “Classification of a subclass of quasilinear two-dimensional lattices by means of characteristic algebras”, Ufimsk. matem. zhurn., 11:3 (2019), 110–132 | DOI | MR

[16] I. T. Khabibullin, M. N. Kuznetsova, “O klassifikatsionnom algoritme integriruemykh dvumerizovannykh tsepochek na osnove algebr Li–Rainkharta”, TMF, 203:1 (2020), 161–173 | DOI | DOI | MR

[17] E. V. Ferapontov, I. T. Habibullin, M. N. Kuznetsova, V. S. Novikov,, “On a class of 2D integrable lattice equations”, J. Math. Phys., 61:7 (2020), 073505, 15 pp. | DOI | MR

[18] I. T. Habibullin, A. R. Khakimova, “Characteristic Lie algebras of integrable differential-difference equations in 3D”, J. Phys. A: Math. Theor., 54:29 (2021), 295202, 34 pp. | DOI | MR

[19] E. V. Ferapontov, V. S. Novikov, I. Roustemoglou, “On the classification of discrete Hirota-type equations in 3D”, Int. Math. Res. Not. IMRN, 2015:13 (2015), 4933–4974 | DOI | MR

[20] I. T. Khabibullin, A. R. Khakimova, “Integraly i kharakteristicheskie algebry sistem diskretnykh uravnenii na pryamougolnom grafe”, TMF, 213:2 (2022), 320–346 | DOI | DOI

[21] I. T. Khabibullin, A. R. Khakimova, “Algebraicheskie reduktsii diskretnykh uravnenii tipa Khiroty–Mivy”, Ufimskii matem. zhurn., 14:4 (2022), 117–130 | DOI

[22] A. V. Zhiber, V. V. Sokolov, “Tochno integriruemye giperbolicheskie uravneniya liuvillevskogo tipa”, UMN, 56:1(337) (2001), 63–106 | DOI | DOI | MR | Zbl

[23] I. M. Anderson, N. Kamran, “The variational bicomplex for hyperbolic second-order scalar partial differential equations in the plane”, Duke Math. J., 87:2 (1997), 265–319 | DOI | MR

[24] O. V. Kaptsov, “O probleme klassifikatsii Gursa”, Programmirovanie, 38:2 (2012), 68–71 | DOI | MR

[25] A. V. Zhiber, R. D. Murtazina, I. T. Khabibullin, A. B. Shabat, Kharakteristicheskie koltsa Li i nelineinye integriruemye uravneniya, Institut kompyuternykh issledovanii, M.–Izhevsk, 2012

[26] A. V. Zhiber, M. N. Kuznetsova, “Integraly i kharakteristicheskie koltsa Li poludiskretnykh sistem uravnenii”, Ufimsk. matem. zhurn., 13:2 (2021), 25–35 | DOI | MR

[27] I. Habibullin, N. Zheltukhina, A. Pekcan, “On the classification of Darboux integrable chains”, J. Math. Phys., 49:10 (2008), 102702, 39 pp. | DOI | MR

[28] I. Habibullin, N. Zheltukhina, A. Pekcan, “Complete list of Darboux integrable chains of the form $t_{1x}=t_x+d(t,t_1)$”, J. Math. Phys., 50:10 (2009), 102710, 23 pp. | DOI | MR

[29] S. V. Smirnov, “Integriruemost po Darbu diskretnykh dvumerizovannykh tsepochek Tody”, TMF, 182:2 (2015), 231–255 | DOI | DOI | MR

[30] V. E. Adler, S. Ya. Startsev, “O diskretnykh analogakh uravneniya Liuvillya”, TMF, 121:2 (1999), 271–284 | DOI | MR