@article{TMF_2023_215_2_a5,
author = {I. S. Kashchenko and S. A. Kaschenko},
title = {Local dynamics of the~model of a~semiconductor laser with delay},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {232--241},
year = {2023},
volume = {215},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a5/}
}
TY - JOUR AU - I. S. Kashchenko AU - S. A. Kaschenko TI - Local dynamics of the model of a semiconductor laser with delay JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 232 EP - 241 VL - 215 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a5/ LA - ru ID - TMF_2023_215_2_a5 ER -
I. S. Kashchenko; S. A. Kaschenko. Local dynamics of the model of a semiconductor laser with delay. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 232-241. http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a5/
[1] A. G. Vladimirov, D. Turaev, “Model for passive mode locking in semiconductor lasers”, Phys. Rev. A, 72:3 (2005), 033808, 13 pp. | DOI
[2] A. Pimenov, J. Javaloyes, S. V. Gurevich, A. G. Vladimirov, “Light bullets in a time-delay model of a wide-aperture mode-locked semiconductor laser”, Philos. Trans. Roy. Soc. A, 376:2124 (2018), 20170372, 14 pp. | DOI | MR
[3] A. G. Vladimirov, D. Rachinskii, M. Wolfrum, “Modeling of passively mode-locked semiconductor lasers”, Nonlinear Laser Dynamics: From Quantum Dots to Cryptography, Wiley-VCH, New York, 2012 | DOI
[4] M. Nizette, D. Rachinskii, A. G. Vladimirov, M. Wolfrum, “Pulse interaction via gain and loss dynamics in passive mode locking”, Phys. D, 218:1 (2006), 95–104 | DOI
[5] M. Bestehorn, E. V. Grigorieva, H. Haken, S. A. Kaschenko, “Order parameters for class-B lasers with a long time delayed feedback”, Phys. D, 145:1–2 (2000), 110–129 | DOI | MR
[6] S. Yanchuk, G. Giacomelli, “Spatio-temporal phenomena in complex systems with time delays”, J. Phys. A: Math. Theor., 50:10 (2017), 103001, 56 pp. | DOI | MR
[7] S. A. Kaschenko, “Primenenie metoda normalizatsii k izucheniyu dinamiki differentsialno-raznostnogo uravneniya s malym mnozhitelem pri proizvodnoi”, Differents. uravneniya, 25:8 (1989), 1448–1451 | MR | Zbl
[8] I. S. Kaschenko, “Lokalnaya dinamika uravnenii s bolshim zapazdyvaniem”, Zh. vychisl. matem. i matem. fiz., 48:12 (2008), 2141–2150 | DOI | MR
[9] A. V. Gaponov-Grekhov, M. I. Rabinovich, “Uravnenie Ginzburga–Landau i nelineinaya dinamika neravnovesnykh sred”, Izv. vuzov. Radiofizika, 30:2 (1987), 131–143 | DOI
[10] T. S. Akhromeeva, S. P. Kurdyumov, G. G. Malinetskii, A. A. Samarskii, Nestatsionarnye struktury i diffuzionnyi khaos, Nauka, M., 1992 | MR
[11] A. Yu. Loskutov, A. S. Mikhailov, Osnovy teorii slozhnykh sistem, In-t kompyuternykh issledovanii, M.–Izhevsk, 2007