The emergence of Airy stress function in two-dimensional disordered packings of particles
Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 225-231 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The packing of hard-core particles in contact with their neighbors is a statically determinate problem. The probability functional method allows deriving the full system of equations for the stress tensor components analytically. For an isotropic and homogeneous two-dimensional packing, we derive the classical Euler–Cauchy and Navier equations; the latter allows expressing the stress tensor of the system in terms of the Airy stress function.
Keywords: stress tensor, Airy stress function, particle packing.
@article{TMF_2023_215_2_a4,
     author = {D. V. Grinev},
     title = {The emergence of {Airy} stress function in two-dimensional disordered packings of particles},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {225--231},
     year = {2023},
     volume = {215},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a4/}
}
TY  - JOUR
AU  - D. V. Grinev
TI  - The emergence of Airy stress function in two-dimensional disordered packings of particles
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 225
EP  - 231
VL  - 215
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a4/
LA  - ru
ID  - TMF_2023_215_2_a4
ER  - 
%0 Journal Article
%A D. V. Grinev
%T The emergence of Airy stress function in two-dimensional disordered packings of particles
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 225-231
%V 215
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a4/
%G ru
%F TMF_2023_215_2_a4
D. V. Grinev. The emergence of Airy stress function in two-dimensional disordered packings of particles. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 225-231. http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a4/

[1] P. G. de Gennes, “Granular matter: a tentative view”, Rev. Modern Phys., 71:2 (1999), S374–S382 | DOI

[2] H. J. Herrmann, J.-P. Hovi, S. Luding (eds.), Physics of Dry Granular Media (Cargése, September 15–26, 1997), NATO Science Series E, 350, Kluwer, Dordrecht, 1998 | DOI | MR

[3] A. Liu, S. R. Nagel (eds.), Jamming and Rheology: Constrained Dynamics on Microscopic and Macroscopic Scales, CRC Press, London, 2001 | DOI

[4] A. Baule, F. Morone, H. J. Herrmann, H. A. Makse, “Edwards statistical mechanics for jammed granular matter”, Rev. Modern Phys., 90:1 (2018), 015006, 58 pp. | DOI | MR

[5] X. Zhang, D. Dai, “Governing equations for stress distribution in rhombic disk packings”, Phys. A, 558 (2020), 124911, 9 pp. | DOI | MR

[6] X. Zhang, D. Dai, “Exact solutions for stress distribution in rhombic disk packings”, Granular Matter, 23:2 (2021), 51, 9 pp. | DOI

[7] R. C. Ball, D. V. Grinev, “The stress transmission universality classes of periodic granular arrays”, Phys. A, 292 (2001), 167–174 | DOI

[8] L. D. Landau, E. M. Livshits, Teoreticheskaya Fizika, v. 7, Teoriya uprugosti, Nauka, M., 1987 | MR | MR | Zbl

[9] S. F. Edwards, D. V. Grinev, “Statistical mechanics of stress transmission in disordered granular arrays”, Phys. Rev. Lett., 82:26 (1999), 5397–5400 | DOI

[10] R. C. Ball, R. Blumenfeld, “Stress field in granular systems: loop forces and potential formulation”, Phys. Rev. Lett., 88:11 (2002), 115505, 4 pp. | DOI

[11] J. D. Goddard, “Microstructural origins of continuum stress fields – A brief history and some unresolved issues”, Recent Developments in Structured Continua (University of Windsor, Windsor, ON, May 29–31, 1985), Pitman Research Notes in Mathematics Series, 143, eds. D. DeKee, P. N. Kaloni, Longman Sci., Harlow; John Wiley Sons, New York, 1986, 179–208 | MR

[12] K. Washizu, Variational Methods in Elasticity and Plasticity, International Series of Monographs in Aeronautics and Astronautics, 9, Pergamon, Oxford, 1982 | MR