Self-oscillatory processes in a discrete $RCL$-line with a tunnel diode
Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 207-224 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a chain of in-series $RCL$ circuits; a constant-voltage source $E$ is connected to one of its ends, and a tunnel diode and a constant capacitor $C_0$ to another one. We show that a nonlinear system of ordinary differential equations in which the known buffer capacity phenomenon is realized serves as a mathematical model of the given generator. Namely, using the combination of analytic and numerical methods, we establish an unlimited growth of the number of coexisting attractors of this system as the number of $RCL$ circuits increases and the other parameters change appropriately. We also perform a comparative analysis of the local dynamics in the discrete and continuous $RCL$ circuits.
Keywords: discrete $RCL$ line, periodic solutions, asymptotics, stability, buffer capacity.
Mots-clés : tunnel diode
@article{TMF_2023_215_2_a3,
     author = {S. D. Glyzin and A. Yu. Kolesov},
     title = {Self-oscillatory processes in a~discrete $RCL$-line with a~tunnel diode},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {207--224},
     year = {2023},
     volume = {215},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a3/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
TI  - Self-oscillatory processes in a discrete $RCL$-line with a tunnel diode
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 207
EP  - 224
VL  - 215
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a3/
LA  - ru
ID  - TMF_2023_215_2_a3
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%T Self-oscillatory processes in a discrete $RCL$-line with a tunnel diode
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 207-224
%V 215
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a3/
%G ru
%F TMF_2023_215_2_a3
S. D. Glyzin; A. Yu. Kolesov. Self-oscillatory processes in a discrete $RCL$-line with a tunnel diode. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 207-224. http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a3/

[1] R. K. Bryton, “Nonlinear oscillations in distributed networks”, Quart. Appl. Math., 24:4 (1967), 289–301

[2] Yu. S. Kolesov, D. I. Shvitra, “Avtokolebaniya v dlinnoi linii s tunnelnym diodom”, Differentsialnye uravneniya i ikh primenenie. Vyp. 18, In-t matematiki i kibernetiki AN LitSSR, Vilnyus, 1977, 27–49 | MR

[3] A. Yu. Kolesov, E. F. Mischenko, N. Kh. Rozov, “Asimptoticheskie metody issledovaniya periodicheskikh reshenii nelineinykh giperbolicheskikh uravnenii”, Trudy MIAN, 222, Nauka, MAIK “Nauka”, M., 1998, 3–191 | MR | Zbl

[4] E. F. Mischenko, V. A. Sadovnichii, A. Yu. Kolesov, N. Kh. Rozov, Mnogolikii khaos, Fizmatlit, M., 2012

[5] A. Yu. Kolesov, N. Kh. Rozov, Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004

[6] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR | MR