Mots-clés : LLG equation, NLS equation.
@article{TMF_2023_215_2_a2,
author = {V. M. Rothos and I. K. Mylonas and T. Bountis},
title = {Dissipative soliton dynamics of {the~Landau{\textendash}Lifshitz{\textendash}Gilbert} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {190--206},
year = {2023},
volume = {215},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a2/}
}
TY - JOUR AU - V. M. Rothos AU - I. K. Mylonas AU - T. Bountis TI - Dissipative soliton dynamics of the Landau–Lifshitz–Gilbert equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 190 EP - 206 VL - 215 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a2/ LA - ru ID - TMF_2023_215_2_a2 ER -
V. M. Rothos; I. K. Mylonas; T. Bountis. Dissipative soliton dynamics of the Landau–Lifshitz–Gilbert equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 190-206. http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a2/
[1] M. Lakshmanan, Th. W. Ruijgrok, C. J. Thompson, “On the dynamics of continuum spin systems”, Phys. A, 84:3 (1976), 577–590 | DOI | MR
[2] L. D. Landau, E. M. Lifshits, “K teorii dispersii magnitnoi pronitsaemosti ferromagnitnykh tel”: L. D. Landau, Sobranie trudov, v. 1, Nauka, M., 1969, 128–143 | MR
[3] T. L. Gilbert, “A phenomenological theory of damping in ferromagnetic materials”, IEEE Trans. Magn., 40:6 (2004), 3443–3449 | DOI
[4] D. Mattis, Teoriya magnetizma. Vvedenie v izuchenie kooperativnykh yavlenii, Mir, M., 1967 | DOI
[5] M. D. Stiles, J. Miltat, “Spin-transfer torque and dynamics”, Spin Dynamics in Confined Magnetic Structures III, Topics in Applied Physics, 101, eds. B. Hillebrands, A. Thiaville, Springer, Berlin, Heidelberg, 2006, 225–308 | DOI
[6] M. Lakshmanan, “The fascinating world of the Landau–Lifshitz–Gilbert equation: an overview”, Philos. Trans. Roy. Soc. London Ser. A, 369:1939 (2011), 1280–1300 | DOI | MR
[7] O. Descalzi, M. Clerc, S. Residori, G. Assanto (eds.), Localized States in Physics: Solitons and Patterns, Springer, Berlin, Heidelberg, 2011 | DOI
[8] Z. Ahsan, K. R. Jayaprakash, “Evolution of a primary pulse in the granular dimers mounted on a linear elastic foundation: An analytical and numerical study”, Phys. Rev. E, 94:4 (2016), 043001, 15 pp. | DOI
[9] W. Królikowski, O. Bang, N. I. Nikolov, D. Neshev, J. Wyller, J. J. Rasmussen, D. Edmundson, “Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media”, J. Opt. B: Quantum Semiclass. Opt., 6:5 (2004), S288–S294 | DOI
[10] A. N. Slavin, V. S. Tiberkevich, “Spin wave mode excited by spin-polarized current in a magnetic nanocontact is a standing self-localized wave bullet”, Phys. Rev. Lett., 95:23 (2005), 237201, 4 pp. | DOI
[11] M. A. Hoefer, T. J. Silva, M. W. Keller, “Theory for a dissipative droplet soliton excited by a spin torque nanocontact”, Phys. Rev. B, 82:5 (2010), 054432, 14 pp. | DOI
[12] S. M. Mohseni, S. R. Sani, J. Persson et al., “Spin torque-generated magnetic droplet solitons”, Science, 339:6125 (2013), 1295–1298 | DOI
[13] I. V. Barashenkov, S. R. Woodford, E. V. Zemlyanaya, “Interactions of parametrically driven dark solitons. I. Néel–Néel and Bloch–Bloch interactions”, Phys. Rev. E, 75:2 (2007), 026604, 18 pp. | DOI | MR
[14] V. Besse, H. Leblond, D. Mihalache, B. A. Malomed, “Pattern formation by kicked solitons in the two-dimensional Ginzburg–Landau medium with a transverse grating”, Phys. Rev. E, 87:1 (2013), 012916, 12 pp. | DOI
[15] Y. Lan, Y. C. Li, “Chaotic spin dynamics of a long nanomagnet driven by a current”, Nonlinearity, 21:12 (2008), 2801–2823 | DOI | MR
[16] M. Daniel, M. Lakshmanan, “Perturbation of solitons in the classical continuum isotropic Heisenberg spin system”, Phys. A, 120:1–2 (1983), 125–152 | DOI
[17] St. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Applied Mathematics, 2, Springer, New York, 2005 | DOI | MR
[18] J. Gruendler, “The existence of homoclinic orbits and the method of Melnikov for systems in $\mathbb R^{n\,}$”, SIAM J. Math. Anal., 16:5 (1985), 907–931 | DOI | MR
[19] M. Yamashita, “Melnikov vector in higher dimensions”, Nonlinear Anal. Theory Methods Appl., 18:7 (1992), 657–670 | DOI | MR
[20] S.-N. Chow, M. Yamashita, “Geometry of the Melnikov vector”, Math. Sci. Eng., 185 (1992), 79–148 | DOI | MR | Zbl
[21] V. M. Rothos, T. C. Bountis, “Mel'nikov analysis of phase space transport in a $N$-degree-of-freedom Hamiltonian system”, Nonlinear Anal. Theory Methods Appl., 30:3 (1997), 1365–1374 | DOI | MR
[22] J. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems, Mathematical Modeling and Computation, 16, SIAM, Philadelphia, PA, 2010 | DOI | MR
[23] M. Raissi, P. Perdikaris, G. E. Karniadakis, “Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations”, J. Comput. Phys., 378 (2019), 686–707 | DOI | MR
[24] V. M. Rothos, A. F. Vakakis, “Dynamic interactions of traveling waves propagating in a linear chain with local essentially nonlinear attachment”, Wave Motion, 46:3 (2009), 174–188 | DOI | MR
[25] K. J. Palmer, “Exponential dichotomy and transversal homoclinic orbits”, J. Differ. Equ., 55:2 (1984), 225–256 | DOI | MR
[26] P. Tsilifis, P. G. Kevrekidis, V. M. Rothos, “Cubic-quintic long-range interactions with double well potentials”, J. Phys. A: Math. Theor., 47:3 (2014), 035201, 21 pp., arXiv: 1207.6731 | DOI | Zbl