Dissipative soliton dynamics of the Landau–Lifshitz–Gilbert equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 190-206 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study ferromagnetic dissipative systems described by the isotropic LLG equation, from the standpoint of their spatially localized dynamical excitations. In particular, we focus on dissipative soliton solutions of a nonlocal NLS equation to which the LLG equation is transformed and use Melnikov's theory to prove the existence of these solutions for sufficiently small dissipation. Next, we employ pseudospectral and PINN (physics-informed neural network) numerical techniques of machine learning to demonstrate the validity of our analytic results. Such localized structures have been detected experimentally in magnetic systems and observed in nano-oscillators, while dissipative magnetic droplet solitons have also been found theoretically and experimentally.
Keywords: ferromagnetic dissipative system, dissipative soliton dynamics
Mots-clés : LLG equation, NLS equation.
@article{TMF_2023_215_2_a2,
     author = {V. M. Rothos and I. K. Mylonas and T. Bountis},
     title = {Dissipative soliton dynamics of {the~Landau{\textendash}Lifshitz{\textendash}Gilbert} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {190--206},
     year = {2023},
     volume = {215},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a2/}
}
TY  - JOUR
AU  - V. M. Rothos
AU  - I. K. Mylonas
AU  - T. Bountis
TI  - Dissipative soliton dynamics of the Landau–Lifshitz–Gilbert equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 190
EP  - 206
VL  - 215
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a2/
LA  - ru
ID  - TMF_2023_215_2_a2
ER  - 
%0 Journal Article
%A V. M. Rothos
%A I. K. Mylonas
%A T. Bountis
%T Dissipative soliton dynamics of the Landau–Lifshitz–Gilbert equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 190-206
%V 215
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a2/
%G ru
%F TMF_2023_215_2_a2
V. M. Rothos; I. K. Mylonas; T. Bountis. Dissipative soliton dynamics of the Landau–Lifshitz–Gilbert equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 190-206. http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a2/

[1] M. Lakshmanan, Th. W. Ruijgrok, C. J. Thompson, “On the dynamics of continuum spin systems”, Phys. A, 84:3 (1976), 577–590 | DOI | MR

[2] L. D. Landau, E. M. Lifshits, “K teorii dispersii magnitnoi pronitsaemosti ferromagnitnykh tel”: L. D. Landau, Sobranie trudov, v. 1, Nauka, M., 1969, 128–143 | MR

[3] T. L. Gilbert, “A phenomenological theory of damping in ferromagnetic materials”, IEEE Trans. Magn., 40:6 (2004), 3443–3449 | DOI

[4] D. Mattis, Teoriya magnetizma. Vvedenie v izuchenie kooperativnykh yavlenii, Mir, M., 1967 | DOI

[5] M. D. Stiles, J. Miltat, “Spin-transfer torque and dynamics”, Spin Dynamics in Confined Magnetic Structures III, Topics in Applied Physics, 101, eds. B. Hillebrands, A. Thiaville, Springer, Berlin, Heidelberg, 2006, 225–308 | DOI

[6] M. Lakshmanan, “The fascinating world of the Landau–Lifshitz–Gilbert equation: an overview”, Philos. Trans. Roy. Soc. London Ser. A, 369:1939 (2011), 1280–1300 | DOI | MR

[7] O. Descalzi, M. Clerc, S. Residori, G. Assanto (eds.), Localized States in Physics: Solitons and Patterns, Springer, Berlin, Heidelberg, 2011 | DOI

[8] Z. Ahsan, K. R. Jayaprakash, “Evolution of a primary pulse in the granular dimers mounted on a linear elastic foundation: An analytical and numerical study”, Phys. Rev. E, 94:4 (2016), 043001, 15 pp. | DOI

[9] W. Królikowski, O. Bang, N. I. Nikolov, D. Neshev, J. Wyller, J. J. Rasmussen, D. Edmundson, “Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media”, J. Opt. B: Quantum Semiclass. Opt., 6:5 (2004), S288–S294 | DOI

[10] A. N. Slavin, V. S. Tiberkevich, “Spin wave mode excited by spin-polarized current in a magnetic nanocontact is a standing self-localized wave bullet”, Phys. Rev. Lett., 95:23 (2005), 237201, 4 pp. | DOI

[11] M. A. Hoefer, T. J. Silva, M. W. Keller, “Theory for a dissipative droplet soliton excited by a spin torque nanocontact”, Phys. Rev. B, 82:5 (2010), 054432, 14 pp. | DOI

[12] S. M. Mohseni, S. R. Sani, J. Persson et al., “Spin torque-generated magnetic droplet solitons”, Science, 339:6125 (2013), 1295–1298 | DOI

[13] I. V. Barashenkov, S. R. Woodford, E. V. Zemlyanaya, “Interactions of parametrically driven dark solitons. I. Néel–Néel and Bloch–Bloch interactions”, Phys. Rev. E, 75:2 (2007), 026604, 18 pp. | DOI | MR

[14] V. Besse, H. Leblond, D. Mihalache, B. A. Malomed, “Pattern formation by kicked solitons in the two-dimensional Ginzburg–Landau medium with a transverse grating”, Phys. Rev. E, 87:1 (2013), 012916, 12 pp. | DOI

[15] Y. Lan, Y. C. Li, “Chaotic spin dynamics of a long nanomagnet driven by a current”, Nonlinearity, 21:12 (2008), 2801–2823 | DOI | MR

[16] M. Daniel, M. Lakshmanan, “Perturbation of solitons in the classical continuum isotropic Heisenberg spin system”, Phys. A, 120:1–2 (1983), 125–152 | DOI

[17] St. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Applied Mathematics, 2, Springer, New York, 2005 | DOI | MR

[18] J. Gruendler, “The existence of homoclinic orbits and the method of Melnikov for systems in $\mathbb R^{n\,}$”, SIAM J. Math. Anal., 16:5 (1985), 907–931 | DOI | MR

[19] M. Yamashita, “Melnikov vector in higher dimensions”, Nonlinear Anal. Theory Methods Appl., 18:7 (1992), 657–670 | DOI | MR

[20] S.-N. Chow, M. Yamashita, “Geometry of the Melnikov vector”, Math. Sci. Eng., 185 (1992), 79–148 | DOI | MR | Zbl

[21] V. M. Rothos, T. C. Bountis, “Mel'nikov analysis of phase space transport in a $N$-degree-of-freedom Hamiltonian system”, Nonlinear Anal. Theory Methods Appl., 30:3 (1997), 1365–1374 | DOI | MR

[22] J. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems, Mathematical Modeling and Computation, 16, SIAM, Philadelphia, PA, 2010 | DOI | MR

[23] M. Raissi, P. Perdikaris, G. E. Karniadakis, “Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations”, J. Comput. Phys., 378 (2019), 686–707 | DOI | MR

[24] V. M. Rothos, A. F. Vakakis, “Dynamic interactions of traveling waves propagating in a linear chain with local essentially nonlinear attachment”, Wave Motion, 46:3 (2009), 174–188 | DOI | MR

[25] K. J. Palmer, “Exponential dichotomy and transversal homoclinic orbits”, J. Differ. Equ., 55:2 (1984), 225–256 | DOI | MR

[26] P. Tsilifis, P. G. Kevrekidis, V. M. Rothos, “Cubic-quintic long-range interactions with double well potentials”, J. Phys. A: Math. Theor., 47:3 (2014), 035201, 21 pp., arXiv: 1207.6731 | DOI | Zbl