Existence of solutions of a system of two ordinary differential equations with a modular–cubic type nonlinearity
Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 318-335 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use asymptotic analysis to study the existence of solutions of a one-dimensional nonlinear system of ordinary differential equations with different powers of a small parameter at higher derivatives. A specific feature of the problem is the presence of a discontinuity of the first kind in the right-hand side of the equation $\varepsilon^4u''=f(u,v,x,\varepsilon)$ in the unknown variable $u$ at the level $u=0$, while the right-hand side of the second equation $\varepsilon^2v''=g(u,v,x,\varepsilon)$ is assumed to be smooth in all variables. We define a generalized solution of the problem is in terms of differential inclusions. Conditions under which generalized solutions turn into strong ones are proposed, and the possibility that the $u$-component of the solution intersects zero only once is studied. The existence theorems are proved by using the asymptotic method of differential inequalities.
Keywords: system of nonlinear equations, small parameter, internal layer, upper and lower solutions, solution asymptotics, strong solutions, discontinuity of the first kind.
@article{TMF_2023_215_2_a11,
     author = {B. V. Tischenko},
     title = {Existence of solutions of a~system of two ordinary differential equations with a~modular{\textendash}cubic type nonlinearity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {318--335},
     year = {2023},
     volume = {215},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a11/}
}
TY  - JOUR
AU  - B. V. Tischenko
TI  - Existence of solutions of a system of two ordinary differential equations with a modular–cubic type nonlinearity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 318
EP  - 335
VL  - 215
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a11/
LA  - ru
ID  - TMF_2023_215_2_a11
ER  - 
%0 Journal Article
%A B. V. Tischenko
%T Existence of solutions of a system of two ordinary differential equations with a modular–cubic type nonlinearity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 318-335
%V 215
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a11/
%G ru
%F TMF_2023_215_2_a11
B. V. Tischenko. Existence of solutions of a system of two ordinary differential equations with a modular–cubic type nonlinearity. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 318-335. http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a11/

[1] A. Ya. Garaeva, A. E. Sidorova, V. A. Tverdislov, N. T. Levashova, “Model predposylok vidoobrazovaniya v predstavleniyakh teorii perkolyatsii i samoorganizovannoi kritichnosti”, Biofizika, 65:5 (2020), 932–948 | DOI | DOI

[2] V. F. Butuzov, N. T. Levashova, A A. Melnikova, “Kontrastnaya struktura tipa stupenki v singulyarno vozmuschennoi sisteme uravnenii s razlichnymi stepenyami malogo parametra”, Zh. vychisl. matem. i matem. fiz., 52:11 (2012), 1983–2003 | DOI | MR

[3] N. T. Levashova, B. V. Tischenko, “Suschestvovanie i ustoichivost resheniya sistemy dvukh nelineinykh uravnenii diffuzii v srede s razryvnymi kharakteristikami”, Zh. vychisl. matem. i matem. fiz., 61:11 (2021), 1850–1872 | DOI | DOI | MR

[4] N. T. Levashova, B. V. Tischenko, “Suschestvovanie i ustoichivost statsionarnogo resheniya sistemy uravnenii diffuzii v srede s razryvnymi kharakteristikami pri razlichnykh usloviyakh kvazimonotonnosti”, TMF, 212:1 (2022), 62–82 | DOI | DOI

[5] N. N. Nefedov, “Razvitie metodov asimptoticheskogo analiza perekhodnykh sloev v uravneniyakh reaktsii–diffuzii–advektsii: teoriya i primenenie”, Zh. vychisl. matem. i matem. fiz., 61:12 (2021), 2074–2094 | DOI | DOI

[6] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992 | MR

[7] V. N. Pavlenko, O. V. Ulyanova, “Metod verkhnikh i nizhnikh reshenii dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami”, Izv. vuzov. Ser. Matem., 42:11 (1998), 69–76 | MR

[8] O. V. Rudenko, “Linearizuemoe uravnenie dlya voln v dissipativnykh sredakh s modulnoi, kvadratichnoi i kvadratichno-kubichnoi nelineinostyami”, Dokl. RAN, 471:1 (2016), 23–27 | DOI | DOI

[9] O. V. Rudenko, “Modulnye solitony”, Dokl. RAN, 471:6 (2016), 451–454 | DOI | MR | Zbl

[10] N. N. Nefedov, O. V. Rudenko, “O dvizhenii fronta v uravnenii tipa Byurgersa s kvadratichnoi i modulnoi nelineinostyu pri nelineinom usilenii”, Dokl. RAN, 478:3 (2018), 274–279 | DOI | DOI

[11] C. M. Hedberg, O. V. Rudenko, “Collisions, mutual losses and annihilation of pulses in a modular nonlinear medium”, Nonlinear Dynam., 90:3 (2017), 2083–2091 | DOI | MR

[12] N. N. Nefedov, E. I. Nikulin, A. O. Orlov, “O periodicheskom vnutrennem sloe v zadache reaktsiya-diffuziya s istochnikom modulno-kubichnogo tipa”, Zh. vychisl. matem. i matem. fiz., 60:9 (2020), 1513–1532 | DOI | DOI

[13] S. A. Ambartsumyan, Raznomodulnaya teoriya uprugosti, Nauka, M., 1982 | MR | Zbl

[14] D. Gilbarg, N. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[15] B. V. Tischenko, “Suschestvovanie, lokalnaya edinstvennost i asimptoticheskaya ustoichivost pogransloinogo resheniya kraevoi zadachi Neimana dlya sistemy dvukh nelineinykh uravnenii s raznymi stepenyami malogo parametra”, Vestn. Mosk. un-ta. Ser. 3. Fiz. Astron., 2021, no. 5, 44–50 | DOI