Minimizing the~number of heteroclinic curves of a~3-diffeomorphism with fixed points with pairwise different Morse
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 311-317
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider Morse–Smale $3$-diffeomorphisms whose nonwandering set consists of exactly four fixed points with pairwise distinct Morse indices. The question of which closed $3$-manifolds admit such diffeomorphisms remains open. The set of these manifolds is known to contain all lens spaces. Moreover, on all manifolds except $\mathbb{S}^2\times\mathbb{S}^1$, such diffeomorphisms have heteroclinic curves. We prove that the number of heteroclinic diffeomorphism curves on a given manifold can be minimized by reducing to finitely many noncompact heteroclinic curves that are orientable intersections of invariant saddle manifolds. This result paves the way to an exhaustive description of closed $3$-manifolds that the diffeomorphisms in question.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
heteroclinic curves, orientable intersection, Morse–Smale diffeomorphisms.
                    
                  
                
                
                @article{TMF_2023_215_2_a10,
     author = {O. V. Pochinka and E. A. Talanova},
     title = {Minimizing the~number of heteroclinic curves of a~3-diffeomorphism with fixed points with pairwise different {Morse}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {311--317},
     publisher = {mathdoc},
     volume = {215},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a10/}
}
                      
                      
                    TY - JOUR AU - O. V. Pochinka AU - E. A. Talanova TI - Minimizing the~number of heteroclinic curves of a~3-diffeomorphism with fixed points with pairwise different Morse JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 311 EP - 317 VL - 215 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a10/ LA - ru ID - TMF_2023_215_2_a10 ER -
%0 Journal Article %A O. V. Pochinka %A E. A. Talanova %T Minimizing the~number of heteroclinic curves of a~3-diffeomorphism with fixed points with pairwise different Morse %J Teoretičeskaâ i matematičeskaâ fizika %D 2023 %P 311-317 %V 215 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a10/ %G ru %F TMF_2023_215_2_a10
O. V. Pochinka; E. A. Talanova. Minimizing the~number of heteroclinic curves of a~3-diffeomorphism with fixed points with pairwise different Morse. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 311-317. http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a10/
