Extensions of Yang–Baxter sets
Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 176-189 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is a first step in constructing the category of braided sets and its closest relative, the category of Yang–Baxter sets. Our main emphasis is on the construction of morphisms and extensions of Yang–Baxter sets. This problem is important for the possible constructions of new solutions of the Yang–Baxter equation and the braid equation. Our main result is the description of a family of solutions of the Yang–Baxter equation on $B \otimes C$ and on $B \times C$, given two linear (set-theoretic) solutions $(B, R^B)$ and $(C, R^C)$ of the Yang–Baxter equation.
Keywords: Yang–Baxter equation, set-theoretic solution, Hopf algebra, extension of Yang–Baxter sets, product of Yang–Baxter sets, Drinfeld twist.
Mots-clés : quandle
@article{TMF_2023_215_2_a1,
     author = {V. G. Bardakov and D. V. Talalaev},
     title = {Extensions of {Yang{\textendash}Baxter} sets},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {176--189},
     year = {2023},
     volume = {215},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a1/}
}
TY  - JOUR
AU  - V. G. Bardakov
AU  - D. V. Talalaev
TI  - Extensions of Yang–Baxter sets
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 176
EP  - 189
VL  - 215
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a1/
LA  - ru
ID  - TMF_2023_215_2_a1
ER  - 
%0 Journal Article
%A V. G. Bardakov
%A D. V. Talalaev
%T Extensions of Yang–Baxter sets
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 176-189
%V 215
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a1/
%G ru
%F TMF_2023_215_2_a1
V. G. Bardakov; D. V. Talalaev. Extensions of Yang–Baxter sets. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 176-189. http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a1/

[1] V. M. Bukhshtaber, “Otobrazheniya Yanga–Bakstera”, UMN, 53:6 (1998), 241–242 | DOI | DOI | MR | Zbl

[2] C. N. Yang, “Some exact results for the many-body problem in one dimension with repulsive delta-function interaction”, Phys. Rev. Lett., 19:23 (1967), 1312–1315 | DOI | MR

[3] R. J. Baxter, “Partition function of the eight-vertex lattice model”, Ann. Phys., 70:1 (1972), 193–228 | DOI | MR

[4] A. B. Zamolodchikov, “Uravneniya tetraedrov i integriruemye sistemy v trekhmernom prostranstve”, ZhETF, 79:2 (1980), 641–664 | MR

[5] A. B. Zamolodchikov, “Tetrahedron equations and the relativistic $S$-matrix of straight-strings in $2+1$-dimensions”, Commun. Math. Phys., 79:4 (1981), 489–505 | DOI | MR

[6] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi. I”, TMF, 40:2 (1979), 194–220 | DOI | MR

[7] L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi i $XYZ$ model Geizenberga”, UMN, 34:5(209) (1979), 13–63 | DOI | MR

[8] V. G. Drinfel'd, “On some unsolved problems in quantum group theory”, Quantum Groups, Lecture Notes in Mathematics, 1510, ed. P. P. Kulish, Springer, Berlin, Heidelberg, 1992, 1–8 | DOI | MR

[9] A. P. Veselov, “Integriruemye otobrazheniya”, UMN, 46:5(281) (1991), 3–45 | DOI | MR | Zbl

[10] A. P. Veselov, “Yang–Baxter map and integrable dynamics”, Phys. Lett. A, 314:3 (2003), 214–221 | DOI | MR | Zbl

[11] V. V. Bazhanov, S. M. Sergeev, “Yang–Baxter maps, discrete integrable equations and quantum groups”, Nucl. Phys. B, 926 (2018), 509–543 | DOI | MR | Zbl

[12] D. Joyce, “A classifying invariant of knots: the knot quandle”, J. Pure Appl. Algebra, 23:1 (1982), 37–65 | DOI | MR

[13] S. V. Matveev, “Distributivnye gruppoidy v teorii uzlov”, Matem. sb., 119:1 (1982), 78–88 | DOI | MR | Zbl

[14] M. Markl, “Operads and PROPs”, Handbook of Algebra, v. 5, Elsevier, North-Holland, Amsterdam, 2008, 87–140 | DOI | MR

[15] V. M. Bukhshtaber, E. G. Riss, “Mnogoznachnye gruppy i $n$-algebry Khopfa”, UMN, 51:4 (1996), 149–150 | DOI | DOI | MR | Zbl

[16] K. Kassel, Kvantovye gruppy, Fazis, M., 1999 | DOI | MR

[17] A. Soloviev, “Non-unitary set-theoretical solutions to the quantum Yang–Baxter equation”, Math. Res. Lett., 7:5–6 (2000), 577–596 | DOI | MR

[18] V. Lebed, A. Vendramin, “Homology of left non-degenerate set-theoretic solutions to the Yang–Baxter equation”, Adv. Math., 304 (2017), 1219–1261 | DOI | MR

[19] M. M. Preobrazhenskaya, D. V. Talalaev, “Rasshirenie grupp, rassloeniya i parametricheskoe uravnenie Yanga–Bakstera”, TMF, 207:2 (2021), 310–318 | DOI | DOI | MR

[20] K. S. Brown, Cohomology of Groups, Graduate Texts in Mathematics, 87, Springer, New York, 1982 | DOI | MR

[21] V. Bardakov, B. Chuzinov, I. Emel'yanenkov, M. Ivanov, T. Kozlovskaya, V. Leshkov, Set-theoretical solutions of simplex equations, arXiv: 2206.08906

[22] V. Chari, A. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, Cambridge, 1995 | MR

[23] N. Yu. Reshetikhin, M. A. Semenov-Tian-Shansky, “Quantum $R$-matrices and factorization problem”, J. Geom. Phys., 5:4 (1988), 533–550 | DOI | MR

[24] V. G. Drinfeld, “Kvazikhopfovy algebry”, Algebra i analiz, 1:6 (1989), 114–148 | MR | Zbl

[25] P. P. Kulish, A. I. Mudrov, “On twisting solutions to the Yang–Baxter equation”, Czech. J. Phys., 50:1 (2000), 115–122 | DOI | MR