Mots-clés : quandle
@article{TMF_2023_215_2_a1,
author = {V. G. Bardakov and D. V. Talalaev},
title = {Extensions of {Yang{\textendash}Baxter} sets},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {176--189},
year = {2023},
volume = {215},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a1/}
}
V. G. Bardakov; D. V. Talalaev. Extensions of Yang–Baxter sets. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 176-189. http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a1/
[1] V. M. Bukhshtaber, “Otobrazheniya Yanga–Bakstera”, UMN, 53:6 (1998), 241–242 | DOI | DOI | MR | Zbl
[2] C. N. Yang, “Some exact results for the many-body problem in one dimension with repulsive delta-function interaction”, Phys. Rev. Lett., 19:23 (1967), 1312–1315 | DOI | MR
[3] R. J. Baxter, “Partition function of the eight-vertex lattice model”, Ann. Phys., 70:1 (1972), 193–228 | DOI | MR
[4] A. B. Zamolodchikov, “Uravneniya tetraedrov i integriruemye sistemy v trekhmernom prostranstve”, ZhETF, 79:2 (1980), 641–664 | MR
[5] A. B. Zamolodchikov, “Tetrahedron equations and the relativistic $S$-matrix of straight-strings in $2+1$-dimensions”, Commun. Math. Phys., 79:4 (1981), 489–505 | DOI | MR
[6] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi. I”, TMF, 40:2 (1979), 194–220 | DOI | MR
[7] L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi i $XYZ$ model Geizenberga”, UMN, 34:5(209) (1979), 13–63 | DOI | MR
[8] V. G. Drinfel'd, “On some unsolved problems in quantum group theory”, Quantum Groups, Lecture Notes in Mathematics, 1510, ed. P. P. Kulish, Springer, Berlin, Heidelberg, 1992, 1–8 | DOI | MR
[9] A. P. Veselov, “Integriruemye otobrazheniya”, UMN, 46:5(281) (1991), 3–45 | DOI | MR | Zbl
[10] A. P. Veselov, “Yang–Baxter map and integrable dynamics”, Phys. Lett. A, 314:3 (2003), 214–221 | DOI | MR | Zbl
[11] V. V. Bazhanov, S. M. Sergeev, “Yang–Baxter maps, discrete integrable equations and quantum groups”, Nucl. Phys. B, 926 (2018), 509–543 | DOI | MR | Zbl
[12] D. Joyce, “A classifying invariant of knots: the knot quandle”, J. Pure Appl. Algebra, 23:1 (1982), 37–65 | DOI | MR
[13] S. V. Matveev, “Distributivnye gruppoidy v teorii uzlov”, Matem. sb., 119:1 (1982), 78–88 | DOI | MR | Zbl
[14] M. Markl, “Operads and PROPs”, Handbook of Algebra, v. 5, Elsevier, North-Holland, Amsterdam, 2008, 87–140 | DOI | MR
[15] V. M. Bukhshtaber, E. G. Riss, “Mnogoznachnye gruppy i $n$-algebry Khopfa”, UMN, 51:4 (1996), 149–150 | DOI | DOI | MR | Zbl
[16] K. Kassel, Kvantovye gruppy, Fazis, M., 1999 | DOI | MR
[17] A. Soloviev, “Non-unitary set-theoretical solutions to the quantum Yang–Baxter equation”, Math. Res. Lett., 7:5–6 (2000), 577–596 | DOI | MR
[18] V. Lebed, A. Vendramin, “Homology of left non-degenerate set-theoretic solutions to the Yang–Baxter equation”, Adv. Math., 304 (2017), 1219–1261 | DOI | MR
[19] M. M. Preobrazhenskaya, D. V. Talalaev, “Rasshirenie grupp, rassloeniya i parametricheskoe uravnenie Yanga–Bakstera”, TMF, 207:2 (2021), 310–318 | DOI | DOI | MR
[20] K. S. Brown, Cohomology of Groups, Graduate Texts in Mathematics, 87, Springer, New York, 1982 | DOI | MR
[21] V. Bardakov, B. Chuzinov, I. Emel'yanenkov, M. Ivanov, T. Kozlovskaya, V. Leshkov, Set-theoretical solutions of simplex equations, arXiv: 2206.08906
[22] V. Chari, A. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, Cambridge, 1995 | MR
[23] N. Yu. Reshetikhin, M. A. Semenov-Tian-Shansky, “Quantum $R$-matrices and factorization problem”, J. Geom. Phys., 5:4 (1988), 533–550 | DOI | MR
[24] V. G. Drinfeld, “Kvazikhopfovy algebry”, Algebra i analiz, 1:6 (1989), 114–148 | MR | Zbl
[25] P. P. Kulish, A. I. Mudrov, “On twisting solutions to the Yang–Baxter equation”, Czech. J. Phys., 50:1 (2000), 115–122 | DOI | MR