Extensions of Yang--Baxter sets
Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 176-189

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a first step in constructing the category of braided sets and its closest relative, the category of Yang–Baxter sets. Our main emphasis is on the construction of morphisms and extensions of Yang–Baxter sets. This problem is important for the possible constructions of new solutions of the Yang–Baxter equation and the braid equation. Our main result is the description of a family of solutions of the Yang–Baxter equation on $B \otimes C$ and on $B \times C$, given two linear (set-theoretic) solutions $(B, R^B)$ and $(C, R^C)$ of the Yang–Baxter equation.
Keywords: Yang–Baxter equation, set-theoretic solution, Hopf algebra, extension of Yang–Baxter sets, product of Yang–Baxter sets, Drinfeld twist.
Mots-clés : quandle
@article{TMF_2023_215_2_a1,
     author = {V. G. Bardakov and D. V. Talalaev},
     title = {Extensions of {Yang--Baxter} sets},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {176--189},
     publisher = {mathdoc},
     volume = {215},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a1/}
}
TY  - JOUR
AU  - V. G. Bardakov
AU  - D. V. Talalaev
TI  - Extensions of Yang--Baxter sets
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 176
EP  - 189
VL  - 215
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a1/
LA  - ru
ID  - TMF_2023_215_2_a1
ER  - 
%0 Journal Article
%A V. G. Bardakov
%A D. V. Talalaev
%T Extensions of Yang--Baxter sets
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 176-189
%V 215
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a1/
%G ru
%F TMF_2023_215_2_a1
V. G. Bardakov; D. V. Talalaev. Extensions of Yang--Baxter sets. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 176-189. http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a1/