Cauchy invariants and exact solutions of nonlinear equations of
Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 165-175

Voir la notice de l'article provenant de la source Math-Net.Ru

We review exact solutions for gravity waves in deep water. All of them are obtained within the Lagrangian framework and are generalizations of Gerstner waves (to the cases of inhomogeneous pressure on the free surface and taking the rotation of the fluid into account). The Cauchy invariants are found for each type of waves.
Keywords: Lagrangian coordinates, Gerstner wave.
Mots-clés : Cauchy invariants
@article{TMF_2023_215_2_a0,
     author = {A. A. Abrashkin and E. N. Pelinovsky},
     title = {Cauchy invariants and exact solutions of nonlinear equations of},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {165--175},
     publisher = {mathdoc},
     volume = {215},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a0/}
}
TY  - JOUR
AU  - A. A. Abrashkin
AU  - E. N. Pelinovsky
TI  - Cauchy invariants and exact solutions of nonlinear equations of
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 165
EP  - 175
VL  - 215
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a0/
LA  - ru
ID  - TMF_2023_215_2_a0
ER  - 
%0 Journal Article
%A A. A. Abrashkin
%A E. N. Pelinovsky
%T Cauchy invariants and exact solutions of nonlinear equations of
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 165-175
%V 215
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a0/
%G ru
%F TMF_2023_215_2_a0
A. A. Abrashkin; E. N. Pelinovsky. Cauchy invariants and exact solutions of nonlinear equations of. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 165-175. http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a0/