Cauchy invariants and exact solutions of nonlinear equations of
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 165-175
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We review exact solutions for gravity waves in deep water. All of
 them are obtained within the Lagrangian framework and are
 generalizations of Gerstner waves (to the cases of inhomogeneous pressure on the free surface and taking the rotation
 of the fluid into account). The Cauchy invariants are found for each type of waves.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Lagrangian coordinates, Gerstner wave.
Mots-clés : Cauchy invariants
                    
                  
                
                
                Mots-clés : Cauchy invariants
@article{TMF_2023_215_2_a0,
     author = {A. A. Abrashkin and E. N. Pelinovsky},
     title = {Cauchy invariants and exact solutions of nonlinear equations of},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {165--175},
     publisher = {mathdoc},
     volume = {215},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a0/}
}
                      
                      
                    TY - JOUR AU - A. A. Abrashkin AU - E. N. Pelinovsky TI - Cauchy invariants and exact solutions of nonlinear equations of JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 165 EP - 175 VL - 215 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a0/ LA - ru ID - TMF_2023_215_2_a0 ER -
A. A. Abrashkin; E. N. Pelinovsky. Cauchy invariants and exact solutions of nonlinear equations of. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 165-175. http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a0/
