Cauchy invariants and exact solutions of nonlinear equations of
Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 165-175 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review exact solutions for gravity waves in deep water. All of them are obtained within the Lagrangian framework and are generalizations of Gerstner waves (to the cases of inhomogeneous pressure on the free surface and taking the rotation of the fluid into account). The Cauchy invariants are found for each type of waves.
Keywords: Lagrangian coordinates, Gerstner wave.
Mots-clés : Cauchy invariants
@article{TMF_2023_215_2_a0,
     author = {A. A. Abrashkin and E. N. Pelinovsky},
     title = {Cauchy invariants and exact solutions of nonlinear equations of},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {165--175},
     year = {2023},
     volume = {215},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a0/}
}
TY  - JOUR
AU  - A. A. Abrashkin
AU  - E. N. Pelinovsky
TI  - Cauchy invariants and exact solutions of nonlinear equations of
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 165
EP  - 175
VL  - 215
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a0/
LA  - ru
ID  - TMF_2023_215_2_a0
ER  - 
%0 Journal Article
%A A. A. Abrashkin
%A E. N. Pelinovsky
%T Cauchy invariants and exact solutions of nonlinear equations of
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 165-175
%V 215
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a0/
%G ru
%F TMF_2023_215_2_a0
A. A. Abrashkin; E. N. Pelinovsky. Cauchy invariants and exact solutions of nonlinear equations of. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 165-175. http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a0/

[1] G. Lamb, Gidrodinamika, Gostekhizdat, M.–L., 1947 | DOI | MR | Zbl

[2] A. A. Abrashkin, D. A. Zenkovich, E. I. Yakubovich, “Matrichnaya formulirovka gidrodinamiki i trekhmernoe obobschenie ptolemeevskikh techenii”, Izv. vuzov. Radiofizika, 39:6 (1996), 783–796 | DOI

[3] V. E. Zakharov, E. A. Kuznetsov, “Gamiltonovskii formalizm dlya nelineinykh voln”, UFN, 167:11 (1997), 1137–1167 | DOI | DOI

[4] A. A. Abrashkin, E. I. Yakubovich, Vikhrevaya dinamika v lagranzhevom opisanii, Fizmatlit, M., 2006

[5] A. Bennett, Lagrangian Fluid Dynamics, Cambridge Univ. Press, Cambridge, 2006 | DOI | MR

[6] E. A. Kuznetsov, “Vortex line representation for the hydrodynamic type equations”, J. Nonlinear Math. Phys., 13:1 (2006), 64–80 | DOI | MR

[7] N. E. Kochin, I. A. Kibel, N. V. Roze, Teoreticheskaya gidromekhanika, v. 1, Fizmatgiz, M., 1963 | MR | Zbl

[8] U. Frisch, B. Villone, “Cauchy's almost forgotten Lagrangian formulation of the Euler equation for 3D incompressible flow”, Eur. Phys. J. H, 39 (2014), 325–351 | DOI

[9] A.-L. Cauchy, “Théorie de la propagation des ondes à la surface d'un fluide pesant d'une profondeur indéfinie – Prix d'analyse math'ematique remporté par M. Augustin-Louis Cauchy, ingénieur des Ponts et Chaussées. (Concours de 1815.)”, Mémoires présentés par divers savans à l'Académie royale des sciences de l'Institut de France et imprimés par son ordre. Sciences mathématiques et physiques, Tome I, Imprimé par autorisation du Roi à l'Imprimerie royale, Paris, 1827, 5–318

[10] N. Besse, U. Frisch, “Geometric formulation of the Cauchy invariants for incompressible Euler flow in flat and curved spaces”, J. Fluid Mech., 825 (2017), 412–478 | DOI | MR

[11] G. G. Stokes, “Notes on Hydrodynamics. IV. Demonstration of a fundamental theorem”, The Cambridge and Dublin Math. J., III (1848), 209–219

[12] A. A. Abrashkin, E. I. Yakubovich, “O ploskikh vikhrevykh techeniyakh idealnoi zhidkosti”, Dokl. AN SSSR, 276:1 (1984), 76–78 | MR | Zbl

[13] A. A. Abrashkin, E. I. Yakubovich, “O nestatsionarnykh vikhrevykh techeniyakh idealnoi zhidkosti”, PMTF, 1985, no. 2, 57–64 | DOI

[14] F. Gerstner, “Theorie der Wellen”, Abhandlunger der Königlichen Böhmischen Geselschaft der Wissenschaften, 1802; Ann. Phys. Lpz., 2 (1809), 412–445 | DOI

[15] A. A. Abrashkin, E. N. Pelinovskii, “O svyazi dreifa Stoksa i volny Gerstnera”, UFN, 188:3 (2018), 329–334 | DOI | DOI

[16] A. A. Abrashkin, E. N. Pelinovskii, “Volny Gerstnera i ikh obobscheniya v gidrodinamike i geofizike”, UFN, 192:5 (2022), 491–506 | DOI | DOI

[17] A. A. Abrashkin, A. G. Solovev, “Gravitatsionnye volny pri neodnorodnom davlenii na svobodnoi poverkhnosti: tochnye resheniya”, Izv. RAN. MZhG, 2013, no. 5, 125–133 | DOI

[18] A. Abrashkin, O. Oshmarina, “Pressure induced breather overturn on deep water: Exact solution”, Phys. Lett. A, 378:38–39 (2014), 2866–2871 | DOI | MR

[19] A. A. Abrashkin, “Unsteady Gerstner waves”, Chaos Solitons Fractals, 118 (2018), 152–158 | DOI | MR

[20] A. A. Abrashkin, O. E. Oshmarina, “Rogue wave formation under the action of quasi-stationary pressure”, Commun. Nonlinear Sci. Numer. Simul., 34 (2016), 66–76 | DOI | MR

[21] A. A. Abrashkin, A. Soloviev, “Vortical freak waves in water under external pressure action”, Phys. Rev. Lett., 110:1 (2013), 014501, 4 pp. | DOI

[22] C. Kharif, E. Pelinovsky, A. Slunyaev, Rogue Waves in the Ocean, Springer, Berlin, 2009 | MR

[23] J. Pedlosky, Geophysical Fluid Dynamics, Springer Science + Business Media, New York, 1979 | DOI

[24] A. Abrashkin, “Wind generated equatorial Gerstner-type waves”, Discrete Contin. Dyn. Syst., 39:8 (2019), 4443–4453 | DOI | MR

[25] A. Abrashkin, “Generalization of Cauchy invariants for equatorial $\beta$-plane flows”, Deep-Sea Research Part II: Topical Studies in Oceanography, 160 (2019), 3–6 | DOI

[26] R. T. Pollard, “Surface waves with rotation: An exact solution”, J. Geophys. Res., 75:30 (1970), 5895–5898 | DOI

[27] A. Constantin, “An exact solution for equatorially trapped waves”, J. Geophys. Res., 117:C5 (2012), C05029, 8 pp. | DOI