Mots-clés : Cauchy invariants
@article{TMF_2023_215_2_a0,
author = {A. A. Abrashkin and E. N. Pelinovsky},
title = {Cauchy invariants and exact solutions of nonlinear equations of},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {165--175},
year = {2023},
volume = {215},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a0/}
}
TY - JOUR AU - A. A. Abrashkin AU - E. N. Pelinovsky TI - Cauchy invariants and exact solutions of nonlinear equations of JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 165 EP - 175 VL - 215 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a0/ LA - ru ID - TMF_2023_215_2_a0 ER -
A. A. Abrashkin; E. N. Pelinovsky. Cauchy invariants and exact solutions of nonlinear equations of. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 2, pp. 165-175. http://geodesic.mathdoc.fr/item/TMF_2023_215_2_a0/
[1] G. Lamb, Gidrodinamika, Gostekhizdat, M.–L., 1947 | DOI | MR | Zbl
[2] A. A. Abrashkin, D. A. Zenkovich, E. I. Yakubovich, “Matrichnaya formulirovka gidrodinamiki i trekhmernoe obobschenie ptolemeevskikh techenii”, Izv. vuzov. Radiofizika, 39:6 (1996), 783–796 | DOI
[3] V. E. Zakharov, E. A. Kuznetsov, “Gamiltonovskii formalizm dlya nelineinykh voln”, UFN, 167:11 (1997), 1137–1167 | DOI | DOI
[4] A. A. Abrashkin, E. I. Yakubovich, Vikhrevaya dinamika v lagranzhevom opisanii, Fizmatlit, M., 2006
[5] A. Bennett, Lagrangian Fluid Dynamics, Cambridge Univ. Press, Cambridge, 2006 | DOI | MR
[6] E. A. Kuznetsov, “Vortex line representation for the hydrodynamic type equations”, J. Nonlinear Math. Phys., 13:1 (2006), 64–80 | DOI | MR
[7] N. E. Kochin, I. A. Kibel, N. V. Roze, Teoreticheskaya gidromekhanika, v. 1, Fizmatgiz, M., 1963 | MR | Zbl
[8] U. Frisch, B. Villone, “Cauchy's almost forgotten Lagrangian formulation of the Euler equation for 3D incompressible flow”, Eur. Phys. J. H, 39 (2014), 325–351 | DOI
[9] A.-L. Cauchy, “Théorie de la propagation des ondes à la surface d'un fluide pesant d'une profondeur indéfinie – Prix d'analyse math'ematique remporté par M. Augustin-Louis Cauchy, ingénieur des Ponts et Chaussées. (Concours de 1815.)”, Mémoires présentés par divers savans à l'Académie royale des sciences de l'Institut de France et imprimés par son ordre. Sciences mathématiques et physiques, Tome I, Imprimé par autorisation du Roi à l'Imprimerie royale, Paris, 1827, 5–318
[10] N. Besse, U. Frisch, “Geometric formulation of the Cauchy invariants for incompressible Euler flow in flat and curved spaces”, J. Fluid Mech., 825 (2017), 412–478 | DOI | MR
[11] G. G. Stokes, “Notes on Hydrodynamics. IV. Demonstration of a fundamental theorem”, The Cambridge and Dublin Math. J., III (1848), 209–219
[12] A. A. Abrashkin, E. I. Yakubovich, “O ploskikh vikhrevykh techeniyakh idealnoi zhidkosti”, Dokl. AN SSSR, 276:1 (1984), 76–78 | MR | Zbl
[13] A. A. Abrashkin, E. I. Yakubovich, “O nestatsionarnykh vikhrevykh techeniyakh idealnoi zhidkosti”, PMTF, 1985, no. 2, 57–64 | DOI
[14] F. Gerstner, “Theorie der Wellen”, Abhandlunger der Königlichen Böhmischen Geselschaft der Wissenschaften, 1802; Ann. Phys. Lpz., 2 (1809), 412–445 | DOI
[15] A. A. Abrashkin, E. N. Pelinovskii, “O svyazi dreifa Stoksa i volny Gerstnera”, UFN, 188:3 (2018), 329–334 | DOI | DOI
[16] A. A. Abrashkin, E. N. Pelinovskii, “Volny Gerstnera i ikh obobscheniya v gidrodinamike i geofizike”, UFN, 192:5 (2022), 491–506 | DOI | DOI
[17] A. A. Abrashkin, A. G. Solovev, “Gravitatsionnye volny pri neodnorodnom davlenii na svobodnoi poverkhnosti: tochnye resheniya”, Izv. RAN. MZhG, 2013, no. 5, 125–133 | DOI
[18] A. Abrashkin, O. Oshmarina, “Pressure induced breather overturn on deep water: Exact solution”, Phys. Lett. A, 378:38–39 (2014), 2866–2871 | DOI | MR
[19] A. A. Abrashkin, “Unsteady Gerstner waves”, Chaos Solitons Fractals, 118 (2018), 152–158 | DOI | MR
[20] A. A. Abrashkin, O. E. Oshmarina, “Rogue wave formation under the action of quasi-stationary pressure”, Commun. Nonlinear Sci. Numer. Simul., 34 (2016), 66–76 | DOI | MR
[21] A. A. Abrashkin, A. Soloviev, “Vortical freak waves in water under external pressure action”, Phys. Rev. Lett., 110:1 (2013), 014501, 4 pp. | DOI
[22] C. Kharif, E. Pelinovsky, A. Slunyaev, Rogue Waves in the Ocean, Springer, Berlin, 2009 | MR
[23] J. Pedlosky, Geophysical Fluid Dynamics, Springer Science + Business Media, New York, 1979 | DOI
[24] A. Abrashkin, “Wind generated equatorial Gerstner-type waves”, Discrete Contin. Dyn. Syst., 39:8 (2019), 4443–4453 | DOI | MR
[25] A. Abrashkin, “Generalization of Cauchy invariants for equatorial $\beta$-plane flows”, Deep-Sea Research Part II: Topical Studies in Oceanography, 160 (2019), 3–6 | DOI
[26] R. T. Pollard, “Surface waves with rotation: An exact solution”, J. Geophys. Res., 75:30 (1970), 5895–5898 | DOI
[27] A. Constantin, “An exact solution for equatorially trapped waves”, J. Geophys. Res., 117:C5 (2012), C05029, 8 pp. | DOI