@article{TMF_2023_215_1_a6,
author = {A. V. Razumov},
title = {Khoroshkin{\textendash}Tolstoy approach to quantum superalgebras},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {121--149},
year = {2023},
volume = {215},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a6/}
}
A. V. Razumov. Khoroshkin–Tolstoy approach to quantum superalgebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 1, pp. 121-149. http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a6/
[1] H. Boos, F. Göhmann, A. Klümper, Kh. S. Nirov, A. V. Razumov, “Universal ${R}$-matrix and functional relations”, Rev. Math. Phys., 26:6 (2014), 1430005, 66 pp., arXiv: 1205.1631 | DOI | MR
[2] A. V. Razumov, “$\ell$-Vesa i faktorizatsiya transfer-operatorov”, TMF, 208:2 (2021), 310–341, arXiv: 2103.16200 | DOI | DOI
[3] A. V. Razumov, “Quantum groups and functional relations for arbitrary rank”, Nucl. Phys. B, 971 (2021), 115517, 51 pp., arXiv: 2104.12603 | DOI | MR
[4] V. V. Bazhanov, S. L. Lukyanov, A. B. Zamolodchikov, “Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz”, Commun. Math. Phys., 177 (1996), 381–398, arXiv: hep-th/9412229 | DOI
[5] V. V. Bazhanov, S. L. Lukyanov, A. B. Zamolodchikov, “Integrable structure of conformal field theory II. Q-operator and DDV equation”, Commun. Math. Phys., 190:2 (1997), 247–278, arXiv: hep-th/9604044 | DOI | MR
[6] V. V. Bazhanov, S. L. Lukyanov, A. B. Zamolodchikov, “Integrable structure of conformal field theory III. The Yang–Baxter relation”, Commun. Math. Phys., 200:2 (1999), 297–324, arXiv: hep-th/9805008 | DOI | MR
[7] V. G. Drinfeld, “Algebry Khopfa i kvantovoe uravnenie Yanga–Bakstera”, Dokl. AN SSSR, 283:5 (1985), 1060–1064 | MR | Zbl
[8] M. Jimbo, “A$q$-difference analogue of $\mathrm U(\mathfrak g)$ and the Yang–Baxter equation”, Lett. Math. Phys., 10:1 (1985), 63–69 | DOI | MR
[9] V. G. Drinfeld, “Quantum groups”, Proceedings of the International Congress of Mathematicians (Berkeley, CA, August 3–11, 1986), eds. A. E. Gleason, AMS, Providence, RI, 1987, 798–820 | MR
[10] M. Rosso, “An analogue of P.B.W. theorem and the universal $R$-matrix for $U_h \mathrm{sl}(N+1)$”, Commun. Math. Phys., 124:2 (1989), 307–318 | DOI | MR
[11] A. N. Kirillov, N. Reshetikhin, “$q$-Weyl group and a multiplicative formula for universal $R$-matrices”, Commun. Math. Phys., 134:2 (1990), 421–431 | DOI | MR
[12] S. Z. Levendorskii, Ya. S. Soibelman, “Kvantovaya gruppa Veilya i multiplikativnaya formula dlya $R$-matritsy prostoi algebry Li”, Funkts. analiz i ego pril., 25:2 (1991), 73–76 | DOI | MR | Zbl
[13] S. Levendorskii, Ya. Soibelman, V. Stukopin, “The quantum Weyl group and the universal quantum $R$-matrix for affine Lie algebra $A_1^{(1)}$”, Lett. Math. Phys., 27:4 (1993), 253–264 | DOI | MR
[14] I. Damiani, “La $R$-matrice pour les algèbres quantiques de type affine non tordu”, Ann. Sci. École Norm. Sup., 31:4 (1998), 493–523 | DOI | MR
[15] I. Damiani, “The $R$-matrix for (twisted) affine quantum algebras”, Representations and Quantizations (Shanghai, 1998), China Higher Education Press, Beijing, 2000, 89–144, arXiv: 1111.4085
[16] V. N. Tolstoi, S. M. Khoroshkin, “Universalnaya $R$-matritsa dlya kvantovannykh neskruchennykh affinnykh algebr Li”, Funkts. analiz i ego pril., 26:1 (1992), 85–88 | DOI | MR | Zbl
[17] G. Lusztig, Introduction to Quantum Groups, Progress in Mathematics, 110, Birkhäuser, Boston, MA, 1993 | MR
[18] S. M. Khoroshkin, V. N. Tolstoy, “On Drinfeld's realization of quantum affine algebras”, J. Geom. Phys., 11:1–4 (1993), 445–452 | DOI | MR
[19] H. Yamane, “Quantized enveloping algebras associated with simple Lie superalgebras and their universal $R$-matrices”, Publ. Res. Inst. Math. Sci., 30:1 (1994), 15–87 | DOI | MR
[20] H. Yamane, “On defining relations of affine Lie superalgebras and affine quantized universal enveloping algebras”, Publ. Res. Inst. Math. Sci., 35:3 (1999), 321–390, arXiv: q-alg/9603015 | DOI | MR
[21] M. D. Gould, R. B. Zhang, A. J. Bracken, “Quantum double construction for graded Hopf algebras”, Bull. Austral. Math. Soc., 47:3 (1993), 353–375 | DOI | MR
[22] T. S. Hakobyan, A. G. Sedrakyan, “Universal $R$ matrix of $\mathrm U_q \mathrm {sl}(n, m)$ quantum superalgebras”, J. Math. Phys., 35:5 (1994), 2552–2559 | DOI | MR
[23] S. M. Khoroshkin, V. N. Tolstoy, “Universal $R$-matrix for quantized (super)algebras”, Commun. Math. Phys., 141:3 (1991), 599–617 | DOI | MR
[24] S. M. Khoroshkin, V. N. Tolstoy, “The Cartan–Weyl basis and the universal $R$-matrix for quantum Kac–Moody algebras and superalgebras”, Quantum Symmetries, eds. H.-D. Doebner, V. K. Dobrev, World Sci., Singapore, 1993, 336–351 | MR
[25] S. M. Khoroshkin, V. N. Tolstoy, Twisting of quantum (super)algebras. Connection of Drinfeld's and Cartan–Weyl realizations for quantum affine algebras, arXiv: hep-th/9404036
[26] S. M. Khoroshkin, V. N. Tolstoy, “Twisting of quantum (super-) algebras”, Generalized Symmetries in Physics (Clausthal, 27–29 July, 1993), eds. H.-D. Doebner, V. K. Dobrev, A. G. Ushveridze, World Sci., Singapore, 1994, 42–54 | MR
[27] S. M. Khoroshkin, V. N. Tolstoy, “The uniqueness theorem for the universal $R$-matrix”, Lett. Math. Phys., 24:3 (1992), 231–244 | DOI | MR
[28] Y.-Z. Zhang, M. D. Gould, “Quantum affine algebras and universal $R$-matrix with spectral parameter”, Lett. Math. Phys., 31:2 (1994), 101–110, arXiv: hep-th/9307007 | DOI | MR
[29] A. J. Bracken, M. D. Gould, Y.-Z. Zhang, G. W. Delius, “Infinite families of gauge-equivalent $R$-matrices and gradations of quantized affine algebras”, Internat. J. Modern Phys. B, 8:25–26 (1994), 3679–3691, arXiv: hep-th/9310183 | DOI | MR
[30] A. J. Bracken, M. D. Gould, Y.-Z. Zhang, “Quantised affine algebras and parameter-dependent $R$-matrices”, Bull. Austral. Math. Soc., 51:2 (1995), 177–194 | DOI | MR
[31] H. Boos, F. Göhmann, A. Klümper, Kh. S. Nirov, A. V. Razumov, “Exercises with the universal $R$-matrix”, J. Phys. A: Math. Theor., 43:41 (2010), 415208, 35 pp., arXiv: 1004.5342 | DOI | MR
[32] H. Boos, F. Göhmann, A. Klümper, Kh. S. Nirov, A. V. Razumov, “On the universal $R$-matrix for the Izergin–Korepin model”, J. Phys. A: Math. Theor., 44:35 (2011), 355202, 25 pp., arXiv: 1104.5696 | DOI | MR
[33] V. V. Bazhanov, Z. Tsuboi, “Baxter's $\mathbf{Q}$-operators for supersymmetric spin chains”, Nucl. Phys. B, 805:3 (2008), 451–516, arXiv: 0805.4274 | DOI | MR
[34] G. Boos, F. Geman, A. Klyumper, Kh. S. Nirov, A. V. Razumov, “Universalnye ob'ekty integriruemosti”, TMF, 174:1 (2013), 25–45, arXiv: 1205.4399 | DOI | DOI | MR | Zbl
[35] A. V. Razumov, “Monodromy operators for higher rank”, J. Phys. A: Math. Theor., 46:38 (2013), 385201, 24 pp., arXiv: 1211.3590 | DOI | MR
[36] V. V. Bazhanov, A. N. Hibberd, S. M. Khoroshkin, “Integrable structure of $\mathcal W_3$ conformal field theory, quantum Boussinesq theory and boundary affine Toda theory”, Nucl. Phys. B, 622:3 (2002), 475–574, arXiv: hep-th/0105177 | DOI | MR
[37] T. Kojima, “Baxter's $Q$-operator for the $W$-algebra $W_N$”, J. Phys. A: Math. Theor., 41:35 (2008), 355206, 16 pp., arXiv: 0803.3505 | DOI | MR
[38] H. Boos, F. Göhmann, A. Klümper, Kh. S. Nirov, A. V. Razumov, “Quantum groups and functional relations for higher rank”, J. Phys. A: Math. Theor., 47:27 (2014), 275201, 47 pp., arXiv: 1312.2484 | DOI | MR
[39] Kh. S. Nirov, A. V. Razumov, “Quantum groups and functional relations for lower rank”, J. Geom. Phys., 112 (2017), 1–28, arXiv: 1412.7342 | DOI
[40] H. Boos, M. Jimbo, T. Miwa, F. Smirnov, Y. Takeyama, “Hidden Grassmann structure in the XXZ model”, Commun. Math. Phys., 272:1 (2007), 263–281, arXiv: hep-th/0606280 | DOI | MR
[41] H. Boos, M. Jimbo, T. Miwa, F. Smirnov, Y. Takeyama, “Hidden Grassmann structure in the XXZ model II: Creation operators”, Commun. Math. Phys., 286:3 (2009), 875–932, arXiv: 0801.1176 | DOI | MR
[42] H. Boos, M. Jimbo, T. Miwa, F. Smirnov, “Hidden Grassmann structure in the XXZ model IV: CFT limit”, Commun. Math. Phys., 299:3 (2010), 825–866, arXiv: 0911.3731 | DOI | MR
[43] A. Klümper, Kh. S. Nirov, A. V. Razumov, “Reduced qKZ equation: general case”, J. Phys. A: Math. Theor., 53:1 (2020), 015202, 35 pp., arXiv: 1905.06014 | DOI | MR | Zbl
[44] A. V. Razumov, “Reduced qKZ equation and genuine qKZ equation”, J. Phys. A: Math. Theor., 53:40 (2020), 405204, 32 pp., arXiv: 2004.02624 | DOI | MR
[45] I. C.-H. Ip, A. M. Zeitlin, “$Q$-operator and fusion relations for $U_q(C^{(2)}(2))$”, Lett. Math. Phys., 104:8 (2014), 1019–1043, arXiv: 1312.4063 | DOI | MR
[46] J. H. H. Perk, C. L. Schultz, “New families of commuting transfer matrices in $q$-state vertex models”, Phys. Lett. A, 84:8 (1981), 407–410 | DOI | MR
[47] V. Chari, A. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, Cambridge, 1994 | MR
[48] V. G. Kac, “Lie superalgebras”, Adv. Math., 26:1 (1977), 8–96 | DOI | MR
[49] M. Jimbo, “A $q$-analogue of $\mathrm U(\mathfrak{gl}(N + 1))$, Hecke algebra, the Yang–Baxter equation”, Lett. Math. Phys., 11:3 (1986), 247–252 | DOI | MR
[50] J. van de Leur, Contragredient Lie superalgebras of finite growth, PhD thesis, Utrecht University, Utrecht, 1986
[51] J. W. van de Leur, “A classification of contragredient Lie superalgebra of finite growth”, Commun. Algebra, 17:8 (1989), 1815–1841 | DOI | MR
[52] C. Meneghelli, J. Teschner, Integrable light-cone lattice discretizations from the universal $R$-matrix, arXiv: 1504.04572
[53] Kh. S. Nirov, A. V. Razumov, “Vertex models and spin chains in formulas and pictures”, SIGMA, 15 (2019), 068, 67 pp., arXiv: 1811.09401 [math-ph] | DOI | MR
[54] H. Zhang, “Representations of quantum affine superalgebras”, Math. Z., 278:3–4 (2014), 663–703, arXiv: 1309.5250 | DOI | MR
[55] T. Tanisaki, “Killing forms, Harish–Chandra homomorphisms and universal $R$-matrices for quantum algebras”, Infinite Analysis (Kyoto University, Kyoto, June 1 –August 31, 1991), Advanced Series in Mathematical Physics, 16, eds. A. Tsuchiya, T. Eguchi, M. Jimbo, World Sci., Singapore, 1992, 941–962 | DOI | MR
[56] R. A. Usmani, “Inversion of a tridiagonal Jacobi matrix”, Linear Algebra Appl., 212/213 (1994), 413–414 | DOI | MR