Mots-clés : perturbation series
@article{TMF_2023_215_1_a5,
author = {N. Bedida and S. Fadhel and M. Difallah and M. Meftah},
title = {Quantum {Coulomb} problem in {a~Gaussian} time-dependent electric field within the~path integral formalism},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {111--120},
year = {2023},
volume = {215},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a5/}
}
TY - JOUR AU - N. Bedida AU - S. Fadhel AU - M. Difallah AU - M. Meftah TI - Quantum Coulomb problem in a Gaussian time-dependent electric field within the path integral formalism JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 111 EP - 120 VL - 215 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a5/ LA - ru ID - TMF_2023_215_1_a5 ER -
%0 Journal Article %A N. Bedida %A S. Fadhel %A M. Difallah %A M. Meftah %T Quantum Coulomb problem in a Gaussian time-dependent electric field within the path integral formalism %J Teoretičeskaâ i matematičeskaâ fizika %D 2023 %P 111-120 %V 215 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a5/ %G ru %F TMF_2023_215_1_a5
N. Bedida; S. Fadhel; M. Difallah; M. Meftah. Quantum Coulomb problem in a Gaussian time-dependent electric field within the path integral formalism. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 1, pp. 111-120. http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a5/
[1] P. A. M. Dirak, Printsipy kvantovoi mekhaniki, Nauka, M., 1979 | MR | MR | Zbl
[2] H. R. Griem, A. C. Kolb, R. Y. Chen, “Stark broadening of hydrogen lines in a plasma”, Phys. Rev., 116:1 (1959), 4–15 | DOI
[3] N. G. Van Kampen, Stokhasticheskie protsessy v fizike i khimii, Vysshaya shkola, M., 1990 | MR | MR
[4] J. W. Dufty, private communication, 2022
[5] L. Chetouani, L. Guechi, T. F. Hammann, “Generalized canonical transformations and path integrals”, Phys. Rev. A, 40:3 (1989), 1157–1164 | DOI | MR
[6] J. G. Hartley, J. R. Ray, “Solutions to the time-dependent Schrödinger equation”, Phys. Rev. A, 25:4 (1982), 2388–2390 | DOI | MR
[7] A. K. Dhara, S. V. Lawande, “Time-dependent invariants and the Feynman propagator”, Phys. Rev. A, 30:1 (1984), 560–567 | DOI | MR
[8] A. Mustafazadeh, On a class of quantum canonical transformations and the time-dependent harmonic oscillator, arXiv: quant-ph/9612038
[9] C. Grosche, “Path integrals for potential problems with $\delta$-function perturbation”, J. Phys. A: Math. Gen., 23:22 (1990), 5205–5234 ; “$\delta$-Function perturbations and Neumann boundary conditions by path integration”, 28:3 (1995), L99–Ll05 | DOI | MR | DOI | MR
[10] D.-H. Lin, “Green's function for the relativistic Coulomb system via sum over perturbation series”, J. Phys. A: Math. Gen., 31:37 (1998), 7577–7584 | DOI | MR
[11] K. V. Bhagwat, S. V. Lawande, “Path integral treatment of Coulomb potential by exact summation of a perturbation series”, Phys. Lett. A, 135:8–9 (1989), 417–420 | DOI
[12] D. C. Khandekar, S. V. Lawande, K. V. Bhagwat, Path-integral Methods and Their Applications, World Sci., Singapore, 1993 | MR
[13] C. Grosche, “Path integration via summation of perturbation expansions and applications to totally reflecting boundaries, and potential steps”, Phys. Rev. Lett., 71:1 (1993), 1–4 | DOI
[14] R. P. Feinman, A. Khibbs, Kvantovaya mekhanika i integraly po traektoriyam, Mir, M., 1968 | MR | Zbl
[15] L. S. Schulman, Techniques and Application of Path Integration, Wiley, New York, 1981 | MR
[16] D. A. McQuarrie, Statistical Mechanics, Harper and Row, New York, 1976
[17] R. Roychoudhury, Y. P. Varshni, M. Sengupta, “Family of exact solutions for the Coulomb potential perturbed by a polynomial in $r$”, Phys. Rev. A, 42:1 (1990), 184–192 | DOI | MR
[18] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, ryadov i proizvedenii, BKhV-Peterburg, SPb., 2011 | MR | MR | Zbl | Zbl