The~сigar soliton and the~Ricci flows perturbation solutions in the~two-dimensional string $\sigma$ model
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 1, pp. 97-110
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Ricci flows perturbation equations and the Weyl anomaly coefficients are derived in the two-dimensional bosonic string $\sigma$ model. These equations correspond to the two-loop flow equations for the graviton field $g_{\mu\nu}$ and the dilaton field $\Phi$. The one-loop perturbation solution of the cigar soliton can be expressed in terms of the hypergeometric functions. The two-loop asymptotic perturbation solution of the cigar soliton is reduced by using a small parameter expansion method. Moreover, analytic solutions of the second basic form $l$ and $n$ are obtained in accordance with the perturbation Gauss–Codazzi equations. The modified expression of the deformed principal curvatures of a two-dimensional surface can then be given in terms of $l$ and $n$. The influence of quantum Ricci flows on the space–time geometry is analyzed and discussed, and the physical meaning of the Weyl anomaly coefficients varying with the momentum scale $\lambda$ is also explained.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
cigar soliton, perturbation solutions
Keywords: Ricci flows, two-dimensional string $\sigma$ model.
                    
                  
                
                
                Keywords: Ricci flows, two-dimensional string $\sigma$ model.
@article{TMF_2023_215_1_a4,
     author = {Jun Yan},
     title = {The~{\cyrs}igar soliton and {the~Ricci} flows perturbation solutions in the~two-dimensional string $\sigma$ model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {97--110},
     publisher = {mathdoc},
     volume = {215},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a4/}
}
                      
                      
                    TY - JOUR AU - Jun Yan TI - The~сigar soliton and the~Ricci flows perturbation solutions in the~two-dimensional string $\sigma$ model JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 97 EP - 110 VL - 215 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a4/ LA - ru ID - TMF_2023_215_1_a4 ER -
%0 Journal Article %A Jun Yan %T The~сigar soliton and the~Ricci flows perturbation solutions in the~two-dimensional string $\sigma$ model %J Teoretičeskaâ i matematičeskaâ fizika %D 2023 %P 97-110 %V 215 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a4/ %G ru %F TMF_2023_215_1_a4
Jun Yan. The~сigar soliton and the~Ricci flows perturbation solutions in the~two-dimensional string $\sigma$ model. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 1, pp. 97-110. http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a4/
