On the integrable symplectic map and the  $N$-soliton solution
Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 1, pp. 74-96
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Three different types of polynomial expansions of the spectral function are used to introduce the Hamiltonian system and the symplectic map associated to the Toda lattice. The integrability of the symplectic map and the Darboux coordinates are discussed. Using the Darboux coordinates, the symplectic map is linearized, and the inversion problem is derived. Finally, inversion is used to provide the $N$-soliton solution for the Toda lattice.
Keywords: symplectic map, integrable system, Darboux coordinates
Mots-clés : inversion, soliton solution.
@article{TMF_2023_215_1_a3,
     author = {Leilei Shi and Dianlou Du},
     title = {On the~integrable symplectic map and the~ $N$-soliton solution},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {74--96},
     year = {2023},
     volume = {215},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a3/}
}
TY  - JOUR
AU  - Leilei Shi
AU  - Dianlou Du
TI  - On the integrable symplectic map and the  $N$-soliton solution
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 74
EP  - 96
VL  - 215
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a3/
LA  - ru
ID  - TMF_2023_215_1_a3
ER  - 
%0 Journal Article
%A Leilei Shi
%A Dianlou Du
%T On the integrable symplectic map and the  $N$-soliton solution
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 74-96
%V 215
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a3/
%G ru
%F TMF_2023_215_1_a3
Leilei Shi; Dianlou Du. On the integrable symplectic map and the  $N$-soliton solution. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 1, pp. 74-96. http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a3/

[1] P. Deift, E. Trubowitz, “Inverse scattering on the line”, Commun. Pure Appl. Math., 32:2 (1979), 121–251 | DOI | MR

[2] M. J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform, SIAM Studies in Applied Mathematics, 4, SIAM, Philadelphia, PA, 1981 | MR

[3] V. B. Matveev, M. A. Salle, Darboux Transformation and Solitons, Springer, Berlin, 1991 | MR

[4] R. Hirota, “Exact solution of the modified Korteweg–de Vries equation for multiple collisions of solitons”, J. Phys. Soc. Japan, 33:5 (1972), 1456–1458 | DOI

[5] C. W. Cao, “Nonlinearization of the Lax systems for AKNS hierarchy”, Sci. China Ser. A, 33:5 (1990), 528–536 | MR

[6] H. D. Wahlquist, F. B. Estabrook, “Bäcklund transformation for solutions of the Korteweg–de Vries equation”, Phys. Rev. Lett., 31:23 (1973), 1386–1390 | DOI | MR

[7] H. Airault, H. P. McKean, J. Moser, “Rational and elliptic solutions of the Korteweg–de Vries equation and a related many-body problem”, Commun. Pure Appl. Math., 30:1 (1977), 95–148 | DOI | MR

[8] J. Hietarinta, N. Joshi, F. W. Nijhoff, Discrete Systems and Integrability, Cambridge Univ. Press, Cambridge, 2016 | MR

[9] K. M. Case, “On discrete inverse scattering problems. II”, J. Math. Phys., 14:7 (1973), 916–920 | DOI | MR

[10] C. B. Manakov, “O polnoi integriruemosti i stokhastizatsii v diskretnykh dinamicheskikh sistemakh”, ZhETF, 67:2 (1974), 543–555 | MR

[11] H. Flaschka, “Relations between infinite-dimensional and finite-dimensional isospectral equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, Japan, May 13–16, 1981), eds. M. Jimbo, T. Miwa, World Sci., Singapore, 1983, 219–240 | MR

[12] S. I. Al'Ber, “Investigation of equations of Korteweg–de Vries type by the method of recurrence relations”, J. London Math. Soc., 19:3 (1979), 467–480 | DOI | MR

[13] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR | MR

[14] L. A. Dickey, Soliton Equations and Hamiltonian Systems, Advanced Series in Mathematical Physics, 12, World Sci., Singapore, 1991 | DOI | MR

[15] J. Morse, “Integrable Hamiltonian systems and spectral theory”, Proceedings of the 1983 Beijing Symposium on Differential Geometry and Differential Equations (Beijing, China, 1983), eds. L. Shantao, S. S. Chern, Sci. Press, Beijing, 1986, 157–229 | MR

[16] E. D. Belokolos, A. I. Bobenko, V. Z. Enol'skii, A. R. Its, V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer, Berlin, 1994

[17] F. Gesztesy, H. Holden, Soliton Equations and Their Algebro-Geometric Solutions, v. I, Cambridge Studies in Advanced Mathematics, 79, $(1+1)$-Dimensional Continuous Models, Cambridge Univ. Press, Cambridge, 2003 | MR

[18] C. W. Cao, “A classical integrable system and the involutive representation of solutions of the KdV equation”, Acta Math. Sinica (N. S.), 7:3 (1991), 216–223 | DOI | MR

[19] O. Ragnisco, C. Cao, Y. Wu, “On the relation of the stationary Toda equation and the symplectic maps”, J. Phys. A: Math. Gen., 28:3 (1995), 573–588 | DOI | MR

[20] D. L. Du, X. Wang, “The expansions of spectral function and the corresponding finite dimensional integrable systems”, J. Math. Anal. Appl., 477:2 (2019), 987–1008 | DOI | MR

[21] M. Toda, “Wave propagation in anharmonic lattices”, J. Phys. Soc. Japan, 23:3 (1967), 501–506 | DOI

[22] M. Hénon, “Integrals of the Toda lattice”, Phys. Rev. B, 9:4 (1974), 1921–1923 | DOI | MR

[23] H. Flaschka, “On the Toda Lattice. II: Inverse-scattering solution”, Prog. Theor. Phys., 51:3 (1974), 703–716 | DOI | MR

[24] M. Bruschi, O. Ragnisco, P. M. Santini, Tu Gui-Zhang, “Integrable symplectic maps”, Phys. D, 49:3 (1991), 273–294 | DOI | MR

[25] A. P. Fordy, “Integrable symplectic maps”, Symmetries and Integrability of Difference Equations, London Mathematical Society Lecture Note Series, 225, eds. P. A. Clarkson, F. W. Nijhoff, 1999, 43–55 | DOI | MR

[26] A. P. Veselov, “Integriruemye otobrazheniya”, UMN, 46:5(281) (1991), 3–45 | DOI | MR | Zbl

[27] J. F. van Diejen, “The dynamics of zeros of the solitonic Baker–Akhiezer function for the Toda chain”, Internat. Math. Res. Notices, 2000:5 (2000), 253–270 | DOI | MR

[28] M. Bruschi, O. Ragnisco, “On new solvable many-body dynamical systems with velocity dependent forces”, Inverse Problems, 4:3 (1988), L15–L20 | DOI | MR

[29] Yu. B. Suris, The Problem of Integrable Discretization: Hamiltonian Approach, Progress in Mathematics, 219, Springer, Basel, 2003 | DOI | MR