@article{TMF_2023_215_1_a2,
author = {Qiulan Zhao and Caixue Li and Xinyue Li},
title = {Application of the~trigonal curve to a~hierarchy of generalized {Toda} lattices},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {47--73},
year = {2023},
volume = {215},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a2/}
}
TY - JOUR AU - Qiulan Zhao AU - Caixue Li AU - Xinyue Li TI - Application of the trigonal curve to a hierarchy of generalized Toda lattices JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 47 EP - 73 VL - 215 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a2/ LA - ru ID - TMF_2023_215_1_a2 ER -
Qiulan Zhao; Caixue Li; Xinyue Li. Application of the trigonal curve to a hierarchy of generalized Toda lattices. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 1, pp. 47-73. http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a2/
[1] M. Toda, “Vibration of a chain with a nonlinear interaction”, J. Phys. Soc. Japan, 22:2 (1967), 431–436 | DOI
[2] M. Toda, Nonlinear Waves and Solitons, Mathematics and its Applications (Japanese Series), 5, Kluwer, Dordrecht, 1989 | MR
[3] M. Toda, Theory of Nonlinear Lattices, Springer Series in Solid-State Sciences, 20, Springer, Berlin, Heidelberg, 2012 | DOI | MR
[4] H. Flaschka, “On the Toda lattice. II. Inverse-scattering solution”, Progr. Theor. Phys., 51:3 (1974), 703–716 | DOI | MR
[5] A. Bloch, Hamiltonian and Gradient Flows, Algorithms, and Control, AMS, Providence, RI, 1994 | DOI | MR
[6] V. Muto, A. C. Scott, P. L. Christiansen, “Thermally generated solitons in a Toda lattice model of DNA”, Phys. Lett. A, 136:1–2 (1989), 33–36 | DOI
[7] M. J. Ablowitz, J. F. Ladik, “Nonlinear differential-difference equations”, J. Math. Phys., 16:3 (1975), 598–603 | DOI | MR
[8] T. Takebe, “Toda lattice hierarchy and conservation laws”, Commun. Math. Phys., 129:2 (1990), 281–318 | DOI | MR
[9] D.-J. Zhang, “Conservation laws of the two-dimensional Toda lattice hierarchy”, J. Phys. Soc. Japan, 71:11 (2002), 2583–2586 | DOI | MR
[10] W.-X. Ma, X.-X. Xu, Y. Zhang, “Semidirect sums of Lie algebras and discrete integrable couplings”, J. Math. Phys., 47:5 (2006), 053501, 16 pp. | DOI | MR
[11] R.-G. Zhou, Q.-Y. Jiang, “A Darboux transformation and an exact solution for the relativistic Toda lattice equation”, J. Phys. A: Math. Gen., 38:35 (2005), 7735–7742 | DOI | MR
[12] C.-Z. Li, J.-S. He, “The extended multi-component Toda hierarchy”, Math. Phys. Anal. Geom., 17:3–4 (2014), 377–407 | DOI | MR
[13] A. R. Its, V. B. Matveev, “Ob operatorakh Khilla s konechnym chislom lakun”, Funkts. analiz i ego pril., 9:1 (1975), 69–70 | DOI | MR | Zbl
[14] I. M. Krichever, “Algebro-geometricheskoe postroenie uravnenii Zakharova–Shabata i ikh periodicheskikh reshenii”, Dokl. AN SSSR, 227:2 (1976), 291–294 | MR | Zbl
[15] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | MR | Zbl
[16] W. Bulla, F. Gesztesy, H. Holden, G. Teschl, “Algebro-geometric quasi-periodic finite-gap solutions of the Toda and Kac–van Moerbeke hierarchies”, Mem. Amer. Math. Soc., 135:641 (1998), 1–79 | DOI | MR
[17] C.-W. Cao, X.-G. Geng, H.-Y. Wang, “Algebro-geometric solution of the $2+1$ dimensional Burgers equation with a discrete variable”, J. Math. Phys., 43:1 (2002), 621–643 | DOI | MR
[18] X.-G. Geng, Y.-T. Wu, “Finite-band solutions of the classical Boussinesq–Burgers equations”, J. Math. Phys., 40:6 (1999), 2971–2982 | DOI | MR
[19] Q.-L. Zhao, C.-X. Li, X.-Y. Li, “Algebro-geometric constructions of a hierarchy of integrable semi-discrete equations”, J. Nonlinear Math. Phys., 2022, Publ. online | DOI
[20] L. Luo, E.-G. Fan, “Variable separation and algebraic-geometric solutions of modified Toda lattice equation”, Modern Phys. Lett. B., 24:19 (2010), 2041–2055 | DOI | MR
[21] X.-G. Geng, D. Gong, “Quasi-periodic solutions of the relativistic Toda hierarchy”, J. Nonlinear Math. Phys., 19:4 (2012), 489–523 | DOI
[22] H. Airault, H. P. McKean, J. Moser, “Rational and elliptic solutions of the Korteweg–de Vries equation and a related many-body problem”, Commun. Pure Appl. Math., 30:1 (1977), 95–148 | DOI | MR
[23] J. N. Elgin, V. Z. Enolski, A. R.Its, “Effective integration of the nonlinear vector Schrödinger equation”, Phys. D, 225:2 (2007), 127–152 | DOI | MR
[24] R. Dickson, F. Gesztesy, K. Unterkofler, “A new approach to the Boussinesq hierarchy”, Math. Nachr., 198:1 (1999), 51–108 | DOI | MR
[25] X.-G. Geng, L.-H. Wu, G.-L. He, “Algebro-geometric constructions of the modified Boussinesq flows and quasi-periodic solutions”, Phys. D, 240:16 (2011), 1262–1288 | DOI | MR
[26] X.-G. Geng, L.-H. Wu, G.-L. He, “Quasi-periodic solutions of the Kaup–Kupershmidt hierarchy”, J. Nonlinear Sci., 23:4 (2013), 527–555 | DOI | MR
[27] J. Wei, X.-G. Geng, X. Zeng, “Quasi-periodic solutions to the hierarchy of four-component Toda lattices”, J. Geom. Phys., 106 (2016), 26–41 | DOI | MR
[28] X. Zeng, X.-G. Geng, “Finite-band solutions for the hierarchy of coupled Toda lattices”, Acta Appl. Math., 154:1 (2018), 59–81 | DOI | MR
[29] L.-L. Ma, X.-X. Xu, “A family of discrete Hamiltonian equations associated with a discrete three-by-three matrix spectral problem”, Internat. J. Modern Phys. B, 23:19 (2009), 3859–3869 | DOI | MR