Mots-clés : Plücker equations
@article{TMF_2023_215_1_a1,
author = {Qianqian Yang and Chuanzhong Li},
title = {Coupled {KP} and {BKP} hierarchies and the~corresponding symmetric functions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {16--46},
year = {2023},
volume = {215},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a1/}
}
TY - JOUR AU - Qianqian Yang AU - Chuanzhong Li TI - Coupled KP and BKP hierarchies and the corresponding symmetric functions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 16 EP - 46 VL - 215 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a1/ LA - ru ID - TMF_2023_215_1_a1 ER -
Qianqian Yang; Chuanzhong Li. Coupled KP and BKP hierarchies and the corresponding symmetric functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 1, pp. 16-46. http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a1/
[1] J. Lepowsky, S. Mandelstam, I. M. Singer (eds.), Vertex Operators in Mathematics and Physics (Berkeley, CA, November 10–17, 1983), Mathematical Sciences Research Institute Publications, 3, eds. J. Lepowsky, S. Mandelstam, I. M. Singer, Springer, New York, 1985 | DOI | MR
[2] P. D. Jarvis, C. M. Yung, “Determinantal forms for composite Schur and Q-functions via the boson-fermion correspondence”, J. Phys. A: Math. Gen., 27:3 (1994), 903–914 | DOI | MR
[3] A. M. Hamel, P. D. Jarvis, C. M. Yung, “Symmetric functions, tableaux decompositions and the fermion-boson correspondence”, Math. Comput. Modelling, 26:8–10 (1997), 149–159 | DOI | MR
[4] P. D. Jarvis, C. M. Yung, “The Schur function realization of vertex operators”, Lett. Math. Phys., 26:2 (1992), 115–122 | DOI | MR
[5] P. D. Jarvis, C. M. Yung, “Symmetric functions and the KP and BKP hierarchies”, J. Phys. A: Math. Gen., 26:21 (1993), 5905–5922 | DOI | MR
[6] E. Date, M. Kashiwara, M. Jimbo, T. Miwa, “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, Japan, May 13 – 16, 1981), eds. M. Jimbo, T. Miwa, World Sci., Singapore, 1983, 39–119 | MR
[7] J. J. C. Nimmo, “Hall–Littlewood symmetric functions and the BKP equation”, J. Phys. A: Math. Gen., 23:5 (1990), 751–760 | DOI | MR
[8] O. Foda, M. Wheeler, “Hall–Littlewood plane partitions and KP”, Int. Math. Res. Not., 2009:14 (2009), 2597–2619 | DOI | MR
[9] Y. Ogawa, “Generalized $Q$-functions and UC hierarchy of B-type”, Tokyo J. Math., 32:2 (2009), 349–380 | DOI | MR
[10] C. Z. Li, “Multi-component universal character hierarchy and its polynomial tau-functions”, Phys. D, 432 (2022), 133166, 13 pp. | DOI | MR
[11] M. Sato, “Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds”, Random Systems and Dynamical Systems (Kyoto, January 7–9, 1981), RIMS Kôkyûroku, 439, Kyoto Univ., Kyoto, 1981, 30–46 | MR | Zbl
[12] Y. You, “Polynomial solutions of the BKP hierarchy and projective representations of symmetric groups”, Infinite-Dimensional Lie Algebras and Groups, Advanced Series in Mathematical Physics, 7, ed. V. G. Kac, World Sci., Teaneck, NJ, 1990, 449–464 | MR
[13] I. A. B. Strachan, D. F. Zuo, “Frobenius manifolds and Frobenius algebra-valued integrable systems”, Lett. Math. Phys., 107:6 (2017), 997–1026 | DOI | MR
[14] I. A. B. Strachan, D. F. Zuo, “Integrability of the Frobenius algebra-valued Kadomtsev–Petviashvili hierarchy”, J. Math. Phys., 56:11 (2015), 113509, 13 pp. | DOI | MR
[15] Chuanzhong Li, Huijuan Zhou, “Solutions of the Frobenius coupled KP equation”, Zhurn. matem. fiz., anal., geom., 15:3 (2019), 369–378 | DOI
[16] Chuan-Chzhun Li, “Silno svyazannye universalnye kharaktery i ierarkhii tipa B”, TMF, 201:3 (2019), 371–381 | DOI | DOI | MR
[17] K. Koike, “On the decomposition of tensor products of the representations of classical groups: by means of universal characters”, Adv. Math., 74:1 (1989), 57–86 | DOI | MR
[18] T. Tsuda, “Universal characters and an extension of the KP hierarchy”, Commun. Math. Phys., 248:3 (2004), 501–526 | DOI | MR
[19] Yan Gao, Chuan-Chzhun Li, “$q$-Deformirovannye universalnye kharaktery i rasshirenie ierarkhii reshetochnykh $q$-deformirovannykh universalnykh kharakterov”, TMF, 208:1 (2021), 51–68 | DOI | DOI
[20] C. Z. Li, “Two-component symplectic universal characters and integrable hierarchies”, Internat. J. Math., 32:7 (2021), 2150045, 15 pp. | DOI | MR
[21] V. Kac, J. van de Leur, “The geometry of spinors and the multicomponent BKP and DKP hierarchies”, The Bispectral Problem (Montreal, PQ, 1997), CRM Proceedings and Lecture Notes, 14, eds. J. Harnad, A. Kasman, AMS, Providence, RI, 1998, 159–202 | DOI | MR
[22] A. Yu. Orlov, T. Shiota, K. Takasaki, Pfaffian structures and certain solutions to BKP hierarchies I. Sums over partitions, arXiv: 1201.4518
[23] A. Yu. Orlov, J. van de Leur, “Character expansion of matrix integrals”, J. Phys. A: Math. Theor., 51:2 (2017), 025208, 34 pp. | MR
[24] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR
[25] S. Okada, “Pfaffian formulas and Schur Q-function identities”, Adv. Math., 353:7 (2019), 446–470 | DOI | MR