Coupled KP and BKP hierarchies and the corresponding symmetric functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 1, pp. 16-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce a series of two-component symmetric functions, investigate the coupled Kadomtsev–Petviashvili (KP) and B-type Kadomtsev–Petviashvili (BKP) hierarchy through their relationship with symmetric functions. Then the Plücker equations derived from their bilinear identity for these two hierarchy are presented in the form of composite Schur functions by using some results from the classical theory of symmetric functions. Finally, we give a combinatorial proof of the facts that two-component Schur polynomials solve the coupled KP hierarchy and two-component Schur Q-polynomials solve the coupled BKP hierarchy.
Keywords: two-component Schur functions, coupled KP hierarchy, bilinear identity, coupled BKP hierarchy, two-component Schur Q-functions.
Mots-clés : Plücker equations
@article{TMF_2023_215_1_a1,
     author = {Qianqian Yang and Chuanzhong Li},
     title = {Coupled {KP} and {BKP} hierarchies and the~corresponding symmetric functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {16--46},
     year = {2023},
     volume = {215},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a1/}
}
TY  - JOUR
AU  - Qianqian Yang
AU  - Chuanzhong Li
TI  - Coupled KP and BKP hierarchies and the corresponding symmetric functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 16
EP  - 46
VL  - 215
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a1/
LA  - ru
ID  - TMF_2023_215_1_a1
ER  - 
%0 Journal Article
%A Qianqian Yang
%A Chuanzhong Li
%T Coupled KP and BKP hierarchies and the corresponding symmetric functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 16-46
%V 215
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a1/
%G ru
%F TMF_2023_215_1_a1
Qianqian Yang; Chuanzhong Li. Coupled KP and BKP hierarchies and the corresponding symmetric functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 1, pp. 16-46. http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a1/

[1] J. Lepowsky, S. Mandelstam, I. M. Singer (eds.), Vertex Operators in Mathematics and Physics (Berkeley, CA, November 10–17, 1983), Mathematical Sciences Research Institute Publications, 3, eds. J. Lepowsky, S. Mandelstam, I. M. Singer, Springer, New York, 1985 | DOI | MR

[2] P. D. Jarvis, C. M. Yung, “Determinantal forms for composite Schur and Q-functions via the boson-fermion correspondence”, J. Phys. A: Math. Gen., 27:3 (1994), 903–914 | DOI | MR

[3] A. M. Hamel, P. D. Jarvis, C. M. Yung, “Symmetric functions, tableaux decompositions and the fermion-boson correspondence”, Math. Comput. Modelling, 26:8–10 (1997), 149–159 | DOI | MR

[4] P. D. Jarvis, C. M. Yung, “The Schur function realization of vertex operators”, Lett. Math. Phys., 26:2 (1992), 115–122 | DOI | MR

[5] P. D. Jarvis, C. M. Yung, “Symmetric functions and the KP and BKP hierarchies”, J. Phys. A: Math. Gen., 26:21 (1993), 5905–5922 | DOI | MR

[6] E. Date, M. Kashiwara, M. Jimbo, T. Miwa, “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, Japan, May 13 – 16, 1981), eds. M. Jimbo, T. Miwa, World Sci., Singapore, 1983, 39–119 | MR

[7] J. J. C. Nimmo, “Hall–Littlewood symmetric functions and the BKP equation”, J. Phys. A: Math. Gen., 23:5 (1990), 751–760 | DOI | MR

[8] O. Foda, M. Wheeler, “Hall–Littlewood plane partitions and KP”, Int. Math. Res. Not., 2009:14 (2009), 2597–2619 | DOI | MR

[9] Y. Ogawa, “Generalized $Q$-functions and UC hierarchy of B-type”, Tokyo J. Math., 32:2 (2009), 349–380 | DOI | MR

[10] C. Z. Li, “Multi-component universal character hierarchy and its polynomial tau-functions”, Phys. D, 432 (2022), 133166, 13 pp. | DOI | MR

[11] M. Sato, “Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds”, Random Systems and Dynamical Systems (Kyoto, January 7–9, 1981), RIMS Kôkyûroku, 439, Kyoto Univ., Kyoto, 1981, 30–46 | MR | Zbl

[12] Y. You, “Polynomial solutions of the BKP hierarchy and projective representations of symmetric groups”, Infinite-Dimensional Lie Algebras and Groups, Advanced Series in Mathematical Physics, 7, ed. V. G. Kac, World Sci., Teaneck, NJ, 1990, 449–464 | MR

[13] I. A. B. Strachan, D. F. Zuo, “Frobenius manifolds and Frobenius algebra-valued integrable systems”, Lett. Math. Phys., 107:6 (2017), 997–1026 | DOI | MR

[14] I. A. B. Strachan, D. F. Zuo, “Integrability of the Frobenius algebra-valued Kadomtsev–Petviashvili hierarchy”, J. Math. Phys., 56:11 (2015), 113509, 13 pp. | DOI | MR

[15] Chuanzhong Li, Huijuan Zhou, “Solutions of the Frobenius coupled KP equation”, Zhurn. matem. fiz., anal., geom., 15:3 (2019), 369–378 | DOI

[16] Chuan-Chzhun Li, “Silno svyazannye universalnye kharaktery i ierarkhii tipa B”, TMF, 201:3 (2019), 371–381 | DOI | DOI | MR

[17] K. Koike, “On the decomposition of tensor products of the representations of classical groups: by means of universal characters”, Adv. Math., 74:1 (1989), 57–86 | DOI | MR

[18] T. Tsuda, “Universal characters and an extension of the KP hierarchy”, Commun. Math. Phys., 248:3 (2004), 501–526 | DOI | MR

[19] Yan Gao, Chuan-Chzhun Li, “$q$-Deformirovannye universalnye kharaktery i rasshirenie ierarkhii reshetochnykh $q$-deformirovannykh universalnykh kharakterov”, TMF, 208:1 (2021), 51–68 | DOI | DOI

[20] C. Z. Li, “Two-component symplectic universal characters and integrable hierarchies”, Internat. J. Math., 32:7 (2021), 2150045, 15 pp. | DOI | MR

[21] V. Kac, J. van de Leur, “The geometry of spinors and the multicomponent BKP and DKP hierarchies”, The Bispectral Problem (Montreal, PQ, 1997), CRM Proceedings and Lecture Notes, 14, eds. J. Harnad, A. Kasman, AMS, Providence, RI, 1998, 159–202 | DOI | MR

[22] A. Yu. Orlov, T. Shiota, K. Takasaki, Pfaffian structures and certain solutions to BKP hierarchies I. Sums over partitions, arXiv: 1201.4518

[23] A. Yu. Orlov, J. van de Leur, “Character expansion of matrix integrals”, J. Phys. A: Math. Theor., 51:2 (2017), 025208, 34 pp. | MR

[24] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR

[25] S. Okada, “Pfaffian formulas and Schur Q-function identities”, Adv. Math., 353:7 (2019), 446–470 | DOI | MR