On solutions of matrix soliton equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 1, pp. 3-15
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that all local holomorphic solutions of matrix soliton equations of parabolic type admit an analytic continuation to globally meromorphic functions of a spatial variable. As examples, we consider the matrix Korteweg–de Vries equation and the matrix modified Korteweg–de Vries equation, as well as various versions of the matrix nonlinear Schrödinger equation.
Mots-clés :
soliton equations
Keywords: analytic continuation, holomorphic solution.
Keywords: analytic continuation, holomorphic solution.
@article{TMF_2023_215_1_a0,
author = {M. A. Shumkin},
title = {On solutions of matrix soliton equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--15},
publisher = {mathdoc},
volume = {215},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a0/}
}
M. A. Shumkin. On solutions of matrix soliton equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 1, pp. 3-15. http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a0/