On solutions of matrix soliton equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 1, pp. 3-15

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that all local holomorphic solutions of matrix soliton equations of parabolic type admit an analytic continuation to globally meromorphic functions of a spatial variable. As examples, we consider the matrix Korteweg–de Vries equation and the matrix modified Korteweg–de Vries equation, as well as various versions of the matrix nonlinear Schrödinger equation.
Mots-clés : soliton equations
Keywords: analytic continuation, holomorphic solution.
@article{TMF_2023_215_1_a0,
     author = {M. A. Shumkin},
     title = {On solutions of matrix soliton equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {215},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a0/}
}
TY  - JOUR
AU  - M. A. Shumkin
TI  - On solutions of matrix soliton equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 3
EP  - 15
VL  - 215
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a0/
LA  - ru
ID  - TMF_2023_215_1_a0
ER  - 
%0 Journal Article
%A M. A. Shumkin
%T On solutions of matrix soliton equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 3-15
%V 215
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a0/
%G ru
%F TMF_2023_215_1_a0
M. A. Shumkin. On solutions of matrix soliton equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 1, pp. 3-15. http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a0/