On solutions of matrix soliton equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 1, pp. 3-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that all local holomorphic solutions of matrix soliton equations of parabolic type admit an analytic continuation to globally meromorphic functions of a spatial variable. As examples, we consider the matrix Korteweg–de Vries equation and the matrix modified Korteweg–de Vries equation, as well as various versions of the matrix nonlinear Schrödinger equation.
Mots-clés : soliton equations
Keywords: analytic continuation, holomorphic solution.
@article{TMF_2023_215_1_a0,
     author = {M. A. Shumkin},
     title = {On solutions of matrix soliton equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--15},
     year = {2023},
     volume = {215},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a0/}
}
TY  - JOUR
AU  - M. A. Shumkin
TI  - On solutions of matrix soliton equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 3
EP  - 15
VL  - 215
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a0/
LA  - ru
ID  - TMF_2023_215_1_a0
ER  - 
%0 Journal Article
%A M. A. Shumkin
%T On solutions of matrix soliton equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 3-15
%V 215
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a0/
%G ru
%F TMF_2023_215_1_a0
M. A. Shumkin. On solutions of matrix soliton equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 1, pp. 3-15. http://geodesic.mathdoc.fr/item/TMF_2023_215_1_a0/

[1] S. von Kowalevsky, Zur Theorie der partiellen Differentialgleichungen, Druck und Verlag von G. Reimer, Berlin, 1874; “Theorie der partiellen Differentialgleichung”, J. Reine Angew. Math., 80 (1875), 1–32 | DOI | MR

[2] A.-L. Cauchy, “Mémoire sur les systèmes d'equations aux dérivées partielles d'ordre quelconque et sur leur réduction à systèmes d'equations linéaires du premier ordre”, C. R. Acad. Sci. Paris, 40 (1842), 131–138

[3] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | Zbl

[4] R. Bullaf, F. Kodri (ed.), Solitony, Mir, M., 1983 | MR | MR

[5] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR

[6] V. I. Nayanov, Mnogopolevye solitony, Fizmatlit, M., 2006 | MR | Zbl

[7] A. V. Domrin, “Golomorfnye resheniya solitonnykh uravnenii”, Tr. MMO, 82:2 (2021), 227–312 | DOI

[8] A. Degasperis, S. Lombardo, “Multicomponent integrable wave equations: I. Darboux-dressing transformation”, J. Phys. A: Math. Theor., 40:5 (2007), 961–977 | DOI | MR

[9] F. Calogero, A. Degasperis, “Coupled nonlinear evolution equations solvable via the inverse spectral transform and solitons that come back: the boomeron”, Lett. Nuovo Cimento, 16:14 (1976), 425–433 | MR

[10] A. Degasperis, M. Conforti, F. Baronio, S. Wabnitz, “Effects of nonlinear wave coupling: Accelerated solitons”, Eur. Phys. J. Special Topics, 147 (2007), 233–252 | DOI

[11] F. Uorner, Osnovy teorii gladkikh mnogoobrazii i grupp Li, Mir, M., 1987 | DOI | MR

[12] Y. Sibuya, Linear Differential Equations in the Complex Domain: Problems of Analytic Continuation, Translations of Mathematical Monographs, 82, AMS, Providence, RI, 1990 | DOI | MR

[13] F. Calogero, A. Degasperis, “New integrable equations of nonlinear Schrödinger type”, Stud. Appl. Math., 113:1 (2004), 91–137 | DOI | MR

[14] P. J. Olver, V. V. Sokolov, “Integrable evolution equations on associative algebra”, Commun. Math. Phys., 193:2 (1998), 245–268 | DOI | MR

[15] P. Olver, J. P. Wang, “Classification of integrable one-component systems on associative algebras”, Proc. London Math. Soc., 81:3 (2000), 566–586 | DOI | MR

[16] A. V. Domrin, B. I. Suleimanov, M. A. Shumkin, “O globalnoi meromorfnosti reshenii uravnenii Penleve i ikh ierarkhii”, Trudy MIAN, 311 (2020), 106–122 | DOI | DOI | MR