Machine learning of the~well-known things
Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 3, pp. 517-528
Voir la notice de l'article provenant de la source Math-Net.Ru
Machine learning (ML) in its current form implies that the answer to any problem can be well approximated by a function of a very peculiar form: a specially adjusted iteration of Heaviside theta-functions. It is natural to ask whether the answers to questions that we already know can be naturally represented in this form. We provide elementary and yet nonevident examples showing that this is indeed possible, and suggest to look for a systematic reformulation of existing knowledge in an ML-consistent way. The success or failure of these attempts can shed light on a variety of problems, both scientific and epistemological.
Keywords:
exact approaches to QFT, nonlinear algebra, machine learning, steepest descent method.
@article{TMF_2023_214_3_a8,
author = {V. V. Dolotin and A. Yu. Morozov and A. V. Popolitov},
title = {Machine learning of the~well-known things},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {517--528},
publisher = {mathdoc},
volume = {214},
number = {3},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_3_a8/}
}
TY - JOUR AU - V. V. Dolotin AU - A. Yu. Morozov AU - A. V. Popolitov TI - Machine learning of the~well-known things JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 517 EP - 528 VL - 214 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2023_214_3_a8/ LA - ru ID - TMF_2023_214_3_a8 ER -
V. V. Dolotin; A. Yu. Morozov; A. V. Popolitov. Machine learning of the~well-known things. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 3, pp. 517-528. http://geodesic.mathdoc.fr/item/TMF_2023_214_3_a8/