@article{TMF_2023_214_3_a6,
author = {E. Albayrak and F. \c{S}. \"Ozcan},
title = {The~$\pm J$ distribution in the~mixed spin-$1/2$ and $5/2$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {486--499},
year = {2023},
volume = {214},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_3_a6/}
}
E. Albayrak; F. Ş. Özcan. The $\pm J$ distribution in the mixed spin-$1/2$ and $5/2$. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 3, pp. 486-499. http://geodesic.mathdoc.fr/item/TMF_2023_214_3_a6/
[1] A. Albino Jr., F. D. Nobre, F. A. da Costa, “The spin-1 Ising spin glass: a renormalization-group approach”, J. Phys.: Condens. Matter, 12:26 (2000), 5713–5726 | DOI
[2] E. Albayrak, M. Karimou, “The $\pm J$ model for the mixed-spin $1/2$ and $5/2$ system”, Chinese J. Phys., 55:4 (2017), 1361–1368 | DOI
[3] Y. Miyoshi, T. Iwashita, T. Idogaki, “The three-dimensional $\pm J$ Ising model with uniform biquadratic exchange interaction”, J. Magn. Magn. Mater., 226–230, Part I (2001), 608–609 | DOI
[4] Y. Miyoshi, T. Idogaki, “Non-equilibrium relaxation study of the $\pm J$ Ising model with biquadratic exchange interaction”, J. Magn. Magn. Mater., 248:2 (2002), 318–331 | DOI
[5] S. L. Yan, L. L. Deng, “Thermodynamic properties of bond dilution Blume–Capel model with random crystal field”, Phys. A: Stat. Mech. Appl., 308:1–4 (2002), 301–312 | DOI
[6] H.-X. Zhu, S.-L. Yan, “Ferromagnetic properties of bond-dilution and random positive or negative uniaxial anisotropy Blume–Capel model”, Commun. Theor. Phys., 42:5 (2004), 789–794 | DOI
[7] S.-L. Yan, H.-X. Zhu, “Critical behaviours and magnetic properties of three-dimensional bond and anisotropy dilution Blume–Capel model in the presence of an applied field”, Chinese Phys., 15:12 (2006), 3026–3032 | DOI
[8] Ü. Akinci, Y. Yüksel, H. Polat, “Effects of the bond dilution on the phase diagrams of a spin-1 transverse Ising model with crystal field interaction on a honeycomb lattice”, Phys. A: Stat. Mech. Appl., 390:4 (2011), 541–552 | DOI
[9] D. Peña, “Modelo de Blume–Emery–Griffiths de vidrio de espín”, Revista Colombiana de Física, 44:1 (2012), 87–91
[10] E. Albayrak, F. Ş. Özcan, “Mixed spin-$1/2$ and $5/2$ Blume–Capel model on the Bethe lattice in the $\pm J$ distribution with an adjusting parameter”, J. Supercond. Nov. Magn., 33:7 (2020), 2179–2188 | DOI
[11] E. Albayrak, “The spin-1 Blume–Capel model on the Bethe lattice in $\pm J$ distribution with an adjustable parameter between FM and AFM phases”, Chinese J. Phys., 56:2 (2018), 622–629 | DOI
[12] D. Peña Lara, J. E. Diosa, C. A. Lozano, “Blume–Capel spin-glass model for Fe–Mn–Al alloys”, Phys. Rev. E, 87:3 (2013), 032108, 9 pp. | DOI
[13] A. Yigit, E. Albayrak, “The random $J$-Model with biquadratic interaction”, J. Supercond. Nov. Magn., 29:9 (2016), 2535–2541 | DOI
[14] W. F. Wolff, J. Zittartz, “On the phase transition of the random bond Ising model”, Z. Phys. B, 52:2 (1983), 117–126 | DOI
[15] J. D. Reger, A. Zippelius, “Three-dimensional random-bond Ising model: Phase diagram and critical properties”, Phys. Rev. Lett., 57:25 (1986), 3225–3228 | DOI
[16] N. Benayad, A. Benyoussef, N. Boccara, “Re-entrant ferromagnetism in a two-dimensional Ising model with random nearest-neighbour interactions”, J. Phys. C: Solid State Phys., 21:31 (1988), 5417–5426 | DOI
[17] A. L. Talapov, L. N. Shchur, “The critical region of the random-bond Ising model”, J. Phys.: Condens. Matter, 6:40 (1994), 8295–8308 | DOI
[18] J.-S. Wang, W. Selke, Vl. S. Dotsenko, V. B. Andreichenko, “The two-dimensional random bond Ising model at criticality – a Monte Carlo study”, Europhys. Lett., 11:4 (1990), 301–306 | DOI
[19] F. D. Nobre, “The two-dimensional $\pm J$ Ising spin glass: a model at its lower critical dimension”, Phys. A: Stat. Mech. Appl., 319 (2003), 362–370 | DOI
[20] I. A. Gruzberg, N. Read, A. W. W. Ludwig, “Random-bond Ising model in two dimensions: The Nishimori line and supersymmetry”, Phys. Rev. B, 63:10 (2001), 104422, 27 pp. | DOI
[21] S. L. A. de Queiroz, “Multicritical point of Ising spin glasses on triangular and honeycomb lattices”, Phys. Rev. B, 73:6 (2006), 064410, 7 pp. | DOI
[22] W. Xiong, F. Zhong, W. Yuan, S. Fan, “Critical behavior of a three-dimensional random-bond Ising model using finite-time scaling with extensive Monte Carlo renormalization-group method”, Phys. Rev. B, 81:5 (2010), 051132, 10 pp. | DOI
[23] T. Papakonstantinou, A. Malakis, “Critical behavior of the three-dimensional Ising model with anisotropic bond randomness at the ferromagnetic-paramagnetic transition line”, Phys. Rev. E, 87:1 (2013), 012132, 10 pp. | DOI
[24] S. Cho, M. P. A. Fisher, “Criticality in the two-dimensional random-bond Ising model”, Phys. Rev. B, 55:2 (1997), 1025–1031 | DOI
[25] K. Afif, A. Benyoussef, M. Hamedoun, A. Hourmatallah, “Phase diagram of $\mathrm{ZnCr}_{2p}\mathrm{Al}_{2-2p}\mathrm{S}_4$ and $\mathrm{Zn}_{1-p}\mathrm{Cd}_p\mathrm{Cr}_2\mathrm{Se}_4$”, Phys. Stat. Sol. (a), 171:2 (1999), 571–575 | 3.0.CO;2-O class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[26] R. F. S. Andrade, S. R. Salinas, “Diluted Ising model with competing interactions”, Phys. A: Stat. Mech. Appl., 270:3–4 (1999), 342–352 | DOI
[27] S. Boettcher, J. Davidheiser, “Reduction of dilute Ising spin glasses”, Phys. Rev. B, 77:21 (2008), 214432, 9 pp. | DOI
[28] J. R. de Sousa, D. F. de Albuquerque, I. P. Fittipaldi, “Spin-glass phase for the diluted site-bond-correlated version”, J. Magn. Magn. Mater., 149:3 (1995), 269–272 | DOI
[29] I. A. Hadjiagapiou, “Monte Carlo analysis of the critical properties of the two-dimensional randomly bond-diluted Ising model via Wang–Landau algorithm”, Phys. A: Stat. Mech. Appl., 390:7 (2011), 1279–1288 | DOI
[30] M. Serva, “Exact and approximate solutions for the dilute Ising model”, Phys. A: Stat. Mech. Appl., 390:13 (2011), 2443–2451 | DOI | MR
[31] G. R. Schreiber, “Frustrated Blume–Emery–Griffiths model”, Eur. Phys. J. B, 9:3 (1999), 479–490 | DOI
[32] M. Hasenbusch, A. Pelissetto, E. Vicari, “Critical behavior of three-dimensional Ising spin glass models”, Phys. Rev. B, 78:21 (2008), 214205, 23 pp. | DOI
[33] F. Romá, S. Risau-Gusman, A. J. Ramirez-Pastor, F. Nieto, E. E. Vogel, “The ground state energy of the Edwards–Anderson spin glass model with a parallel tempering Monte Carlo algorithm”, Phys. A: Stat. Mech. Appl., 388:14 (2009), 2821–2838 | DOI
[34] Y. Matsuda, M. Müller, H. Nishimori, T. Obuchi, A. Scardicchio, “Distribution of partition function zeros of the $\pm J$ model on the Bethe lattice”, J. Phys. A: Math. Theor., 43:28 (2010), 285002, 20 pp. | DOI | MR
[35] G. Ceccarelli, A. Pelissetto, E. Vicari, “Ferromagnetic-glassy transitions in three-dimensional Ising spin glasses”, Phys. Rev. B, 84:13 (2011), 134202, 9 pp. | DOI
[36] E. Albayrak, “$\pm J$ model on the Bethe lattice with crystal field interaction”, J. Magn. Magn. Mater., 355 (2014), 18–21 | DOI
[37] D. F. de Albuquerque, I. P. Fittipaldi, J. R. de Sousa, “Site-bond correlations in the three-dimensional Heisenberg model: Application to $\mathrm{KNi}_p\mathrm{Mg}_{1-p}\mathrm{F}_3$”, Phys. Rev. B, 56:21 (1997), 13650–13653 | DOI
[38] Y. El Amraoui, L. Bejjit, A. Lamrabat, H. Arhchoui, A. Benyoussef, M. Haddad, “The antiferromagnetic exchange interaction anisotropy and magnetic properties of a diluted Ising-72 model”, J. Magn. Magn. Mater., 241:2–3 (2002), 371–380 | DOI
[39] J. Kple, F. Hontinfinde, E. Albayrak, “Staggered quadrupolar phase in the bond-diluted spin-1 Blume–Emery–Griffiths model”, Internat. J. Theor. Phys., 59:12 (2020), 3915–3935 | DOI | MR
[40] N. Benayad, A. Klümper, J. Zittartz, A. Benyoussef, “Two-dimensional mixed spin Ising models with bond dilution and random $\pm J$ interactions”, Z. Phys. B, 77:2 (1989), 339–341 | DOI
[41] Y. Belmamoun, M. Kerouad, “Phase transition and magnetic properties of a bond-diluted mixed spin-1 and spin-$\frac{1}{2}$ Ising model with the uniaxial and biaxial single-ion anisotropy”, Phys. Scr., 77:2 (2008), 025706, 8 pp. | DOI
[42] Y. F. Zhang, S. L. Yan, “Critical behaviors and magnetic multi-compensation points of bond dilution mixed Blume–Capel model in bimodal magnetic field”, Sol. State Commun., 146:11–12 (2008), 478–482 | DOI
[43] N. Benayad, A. Dakhama, A. Klümper, J. Zittartz, “Mixed spin-$3/2$ and spin-$1/2$ Ising models with random nearest-neighbour interactions”, Ann. Phys. Lpz., 508:4 (1996), 387–400 | DOI
[44] E. Albayrak, “The $\pm J$ model for the mixed-spin $1/2$ and $3/2$ Blume–Capel model”, Phys. B: Condens. Matt., 494 (2016), 91–95 | DOI | MR
[45] M. Karimou, R. A. Yessoufou, A. Kpadonou, T. Oke, F. Hontinfinde, “Bethe approach study of the mixed spin-$1/2$ and spin-$5/2$ Ising system in the presence of an applied magnetic field”, Condens. Matter Phys., 19:3 (2016), 33003, 22 pp. | DOI