@article{TMF_2023_214_3_a5,
author = {M. Alp and Chin Hee Pah and M. K. Saburov},
title = {The~description of generalized translation-invariant $p$-adic},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {469--485},
year = {2023},
volume = {214},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_3_a5/}
}
TY - JOUR AU - M. Alp AU - Chin Hee Pah AU - M. K. Saburov TI - The description of generalized translation-invariant $p$-adic JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 469 EP - 485 VL - 214 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2023_214_3_a5/ LA - ru ID - TMF_2023_214_3_a5 ER -
M. Alp; Chin Hee Pah; M. K. Saburov. The description of generalized translation-invariant $p$-adic. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 3, pp. 469-485. http://geodesic.mathdoc.fr/item/TMF_2023_214_3_a5/
[1] S. Albeverio, R. Cianci, A. Yu. Khrennikov, “$p$-Adic valued quantization”, $p$-Adic Numbers Ultrametric Anal. Appl., 1:2 (2009), 91–104 | DOI | MR | Zbl
[2] S. Albeverio, A. Yu. Khrennikov, V. M. Shelkovich, Theory of $P$-adic Distributions: Linear and Nonlinear Models, London Mathematical Society Lecture Note Series, 370, Cambridge Univ. Press, Cambridge, 2010 | MR | Zbl
[3] E. G. Beltrametti, G. Cassinelli, “Quantum mechanics and $p$-adic numbers”, Found. Phys., 2 (1972), 1–7 | DOI | MR
[4] A. Yu. Khrennikov, $p$-Adic Valued Distributions in Mathematical Physics, Mathematics and its Applications, 309, Kluwer, Dordrecht, 1994 | DOI | MR
[5] A. Khrennikov, Interpretations of Probability, De Gruyter, Berlin, 2009 | DOI | MR | Zbl
[6] B. C. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR | MR | Zbl
[7] I. V. Volovich, “$p$-Adic string”, Class. Quantum Grav., 4:4 (1987), L83–L87 | DOI | MR
[8] Kh.-O. Georgi, Gibbsovskie mery i fazovye perekhody, Mir, M., 1992 | MR
[9] U. A. Rozikov, Gibbs Measures on Cayley Trees, World Sci., Singapore, 2013 | DOI | MR | Zbl
[10] U. Rozikov, “Gibbs measures on Cayley trees: results and open problems”, Rev. Math. Phys., 25:1 (2013), 1330001, 112 pp. | DOI | MR
[11] N. N. Ganikhodzhaev, F. M. Mukhamedov, U. A. Rozikov, “Fazovye perekhody v modeli Izinga na $\mathbb Z$ nad polem $p$-adicheskikh chisel”, Uzb. matem. zhurn., 1998, no. 4, 23–29 | MR
[12] N. N. Ganikhodzhaev, F. M. Mukhamedov, U. A. Rozikov, “Suschestvovanie fazovogo perekhoda dlya $p$-adicheskoi modeli Pottsa na mnozhestve $\mathbb {Z}$”, TMF, 130:3 (2002), 500–507 | DOI | DOI | MR | Zbl
[13] F. M. Mukhamedov, U. A. Rozikov, “On inhomogeneous $p$-adic Potts model on a Cayley tree”, Infin. Dimens. Anal. Quantum Probab. Relat. Top, 8:2 (2005), 277–290 | DOI | MR | Zbl
[14] F. M. Mukhamedov, “On the existence of generalized Gibbs measures for the one-dimensional $p$-adic countable state Potts model”, Trudy MIAN, 265 (2009), 177–188 | DOI | MR | Zbl
[15] F. Mukhamedov, H. Akin, “Phase transitions for $p$-adic Potts model on the Cayley tree of order three”, J. Stat. Mech., 2013 (2013), P07014, 30 pp. | DOI | MR
[16] F. Mukhamedov, H. Akin, “On non-Archimedean recurrence equations and their applications”, J. Math. Anal. Appl., 423:2 (2015), 1203–1218 | DOI | MR
[17] F. Mukhamedov, M. Dogan, H. Akin, “Phase transition for the $p$-adic Ising–Vannimenus model on the Cayley tree”, J. Stat. Mech. Theory Exp., 2014:10 (2014), P10031, 21 pp. | DOI | MR
[18] F. M. Mukhamedov, O. N. Khakimov, “$p$-adicheskie monomialnye uravneniya i ikh vozmuscheniya”, Izv. RAN. Ser. matem., 84:2 (2020), 152–165 | DOI | DOI | MR
[19] F. M. Mukhamedov, M. Saburov, O. N. Khakimov, “On $p$-adic Ising–Vannimenus model on an arbitrary order Cayley tree”, J. Stat. Mech., 2015 (2015), P05032, 26 pp. | DOI | MR
[20] U. A. Rozikov, O. N. Khakimov, “$p$-Adicheskie mery Gibbsa i markovskie sluchainye polya na schetnykh grafakh”, TMF, 175:1 (2013), 84–92 | DOI | MR | Zbl
[21] U. A. Rozikov, O. N. Khakimov, “Description of all translation-invariant $p$-adic Gibbs measures for the Potts model on a Cayley tree”, Markov Process. Related Fields, 21:1 (2015), 177–204 | MR | Zbl
[22] M. Saburov, M. A. K. Ahmad, “Quadratic equations over $p$-adic fields and their application in statistical mechanics”, Sci. Asia, 41:3 (2015), 209–215 | DOI
[23] M. Saburov, M. A. K. Ahmad, “On descriptions of all translation invariant p-adic Gibbs measures for the Potts model on the Cayley tree of order three”, Math. Phys. Anal. Geom., 18:1 (2015), 26, 33 pp. | DOI | MR
[24] C. Külske, U. A. Rozikov, R. M. Khakimov, “Description of all translation-invariant splitting Gibbs measures for the Potts model on a Cayley tree”, J. Stat. Phys., 156:1 (2013), 189–200 | DOI | MR
[25] F. Mukhamedov, M. Saburov, “On equation $x^q=a$ over $\mathbb Q_p$”, J. Number Theory, 133:1 (2013), 55–58 | DOI | MR
[26] M. Saburov, M. A. K. Ahmad, “Solvability and number of roots of bi-quadratic equations over $p$-adic fields”, Malays. J. Math. Sci., 10(S) (2016), 15–35 | MR
[27] F. Mukhamedov, B. Omirov, M. Saburov, “On cubic equations over $p$-adic field”, Internat. J. Number Theory, 10:5 (2014), 1171–1190 | DOI | MR
[28] F. M. Mukhamedov, B. A. Omirov, M. Kh. Saburov, K. K. Masutova, “O razreshimosti kubicheskikh uravnenii v mnozhestve tselykh $p$-adicheskikh chisel ($p>3$)”, Sib. matem. zhurn., 54:3 (2013), 637–654 | DOI | MR
[29] M. Saburov, M. A. K. Ahmad, “Solvability criteria for cubic equations over $\mathbb{Z}_2^*$”, AIP Conf. Proc., 1602:1 (2014), 792–797 ; “Solvability of cubic equations over $\mathbb{Q}_3$”, Sains Malaysiana, 44:4 (2015), 635–641 ; “The number of solutions of cubic equations over $\mathbb{Q}_3$”, 44:5 (2015), 765–769 | DOI | DOI | DOI
[30] M. Saburov, M. A. K. Ahmad, “Local descriptions of roots of cubic equations over $p$-adic fields”, Bull. Malays. Math. Sci. Soc., 41:2 (2018), 965–984 | DOI | MR
[31] M. Saburov, M. A. K. Ahmad, “The dynamics of the Potts–Bethe mapping over $\mathbb{Q}_p$: the case $p\equiv 2\;(\mathrm{mod}\,3)$”, J. Phys.: Conf. Ser., 819 (2017), 012017, 15 pp. | DOI | MR
[32] M. Saburov, M. A. K. Ahmad, M. Alp, “The study on general cubic equations over $p$-adic fields”, Filomat, 35:4 (2021), 1115–1131 | DOI | MR
[33] M. Saburov, M. J. Ismail, “On square root function over $\mathbb{Q}_p$ and its application”, J. Phys.: Conf. Ser., 819 (2017), 012028, 10 pp. | DOI | MR
[34] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, Nauka, M., 1972 | MR | Zbl
[35] F. Mukhamedov, O. Khakimov, “Phase transition and chaos: $P$-adic Potts model on a Cayley tree”, Chaos Solitions Fractals, 87 (2016), 190–196 ; “On Julia set and chaos in $p$-adic Ising model on the Cayley tree”, Math. Phys. Anal. Geom., 20:4 (2017), 23, 14 pp. ; “Chaotic behavior of the $p$-adic Potts–Bethe mapping”, Discrete Contin. Dyn. Syst., 38:1 (2018), 231–245 ; “Translation-invariant generalized $p$-adic Gibbs measures for the Ising model on Cayley trees”, Math. Meth. Appl. Sci., 44:16 (2020), 12302–12316 | DOI | MR | DOI | MR | DOI | MR | DOI | MR
[36] F. Mukhamedov, O. Khakimov, “Chaotic behavior of the $p$-adic Potts–Behte mapping II”, Ergod. Theory Dyn. Syst., 42:11 (2022), 3433–3457 | DOI | MR
[37] F. Mukhamedov, “A dynamical system approach to phase transitions for $p$-adic Potts model on the Cayley tree of order two”, Rep. Math. Phys., 70:3 (2012), 385–406 | DOI | MR
[38] F. M. Mukhamedov, “On dynamical systems and phase transitions for $q+1$-state $p$-adic Potts model on the Cayley tree”, Math. Phys. Anal. Geom., 16:1 (2013), 49–87 | DOI | MR
[39] M. A. Kh. Ahmad, L. Liao, M. Saburov, “Periodic $p$-adic Gibbs measures of $q$-state Potts model on Cayley trees I: The chaos implies the vastness of the set of $p$-adic Gibbs measures”, J. Stat. Phys., 171:6 (2018), 1000–1034 | DOI | MR
[40] F. Mukhamedov, O. Khakimov, “On periodic Gibbs measures of $p$-adic Potts model on a Cayley tree”, $p$-Adic Numbers Ultrametric Anal. Appl., 8:3 (2016), 225–235 | DOI | MR