Nonlinear interference of solitons and waves in the domain magnetic structure
Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 3, pp. 427-468 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use the nonlinear steepest descent method in the framework of the sine-Gordon model to study the behavior of dispersive activation and gapless waves at large times in a stripe domain structure of magnets and the nonadiabatic wave interaction with solitons in the domain structure. We show that the nonlinear interference of solitons and waves leads to oscillations of the soliton cores. Over time, they relax according to a power law. We determine the changes in the velocity and frequencies of solitons in a domain structure under the influence of spin waves.
Keywords: helicoidal structure, Riemann problem, kinks, breathers.
Mots-clés : sine-Gordon equation
@article{TMF_2023_214_3_a4,
     author = {V. V. Kiselev and S. V. Batalov},
     title = {Nonlinear interference of solitons and waves in the~domain magnetic structure},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {427--468},
     year = {2023},
     volume = {214},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_3_a4/}
}
TY  - JOUR
AU  - V. V. Kiselev
AU  - S. V. Batalov
TI  - Nonlinear interference of solitons and waves in the domain magnetic structure
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 427
EP  - 468
VL  - 214
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_214_3_a4/
LA  - ru
ID  - TMF_2023_214_3_a4
ER  - 
%0 Journal Article
%A V. V. Kiselev
%A S. V. Batalov
%T Nonlinear interference of solitons and waves in the domain magnetic structure
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 427-468
%V 214
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2023_214_3_a4/
%G ru
%F TMF_2023_214_3_a4
V. V. Kiselev; S. V. Batalov. Nonlinear interference of solitons and waves in the domain magnetic structure. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 3, pp. 427-468. http://geodesic.mathdoc.fr/item/TMF_2023_214_3_a4/

[1] I. E. Dzyaloshinskii, “Teoriya gelikoidalnykh struktur v antiferromagnetikakh III”, ZhETF, 47:3 (1964), 992–1002

[2] Yu. A. Izyumov, “Modulirovannye ili dlinnoperiodicheskie magnitnye struktury kristallov”, UFN, 144:3 (1984), 430–470 | DOI

[3] V. G. Baryakhtar, D. A. Yablonskii, “Indutsirovanie dlinnoperiodicheskikh struktur v rombicheskikh i romboedricheskikh antiferromagnetikakh”, FTT, 24:8 (1982), 2522–2524

[4] Yu. A. Izyumov, Difraktsiya neitronov na dlinnoperiodicheskikh strukturakh, Energoatomizdat, M., 1987

[5] A. B. Borisov, V. V. Kiselev, Kvaziodnomernye magnitnye solitony, Fizmatlit, M., 2014

[6] M. K. Shirobokov, “K teorii mekhanizma namagnichivaniya ferromagnetikov”, ZhETF, 15:1–2 (1945), 57–76

[7] B. N. Filippov, A. P. Tankeev, Dinamicheskie effekty v ferromagnetikakh s domennoi strukturoi, Nauka, M., 1987

[8] A. B. Borisov, J. Kishine, Y. G. Bostrem, A. S. Ovchinnikov, “Magnetic soliton transport over topological spin texture in chiral helimagnet with strong easy-plane anisotropy”, Phys. Rev. B, 79 (2009), 134436–134446 | DOI

[9] V. V. Kiselev, A. A. Raskovalov, “Solitony elektricheskoi polyarizatsii v multiferroikakh”, Fizika tverdogo tela, 58:3 (2016), 485–490 | DOI

[10] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR

[11] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | MR | Zbl

[12] G. Beitmen, A. Eirdeii, Vysshie transtsendentnye funktsii, v. 3, Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Nauka, M., 1967 | MR | Zbl

[13] P. F. Byrd, M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, 67, Springer, Berlin, 1971 | DOI | MR | Zbl

[14] Dzh. Khirt, I. Lote, Teoriya dislokatsii, Atomizdat, M., 1972

[15] A. S. Kovalev, I. V. Gerasimchuk, “Nelineinaya lokalizatsiya vozbuzhdenii i dinamika solitonov v samomodulirovannykh sistemakh”, ZhETF, 122:5(11) (2002), 1116–1124 | DOI

[16] V. V. Kiselev, A. A. Raskovalov, “Solitons and nonlinear waves in the spiral magnetic structures”, Chaos Solitons Fractals, 84 (2016), 88–103 | DOI | MR

[17] V. V. Kiselev, A. A. Raskovalov, “Nelineinaya dinamika kvaziodnomernoi spiralnoi struktury”, TMF, 173:2 (2012), 268–292 | DOI | DOI | MR

[18] L. Martínez Alonso, “Effect of the radiation component on soliton motion”, Phys. Rev. D, 32:6 (1985), 1459–1466 | DOI | MR

[19] L. Martínez Alonso, “Soliton motion in the case of a nonzero reflection coefficient”, Phys. Rev. Lett., 54:6 (1985), 499–501 | DOI | MR

[20] E. A. Kuznetsov, A. V. Mikhailov, “Relaksatsionnye kolebaniya solitonov”, Pisma v ZhETF, 60:6 (1994), 466–470

[21] E. A. Kuznetsov, A. V. Mikhailov, I. A. Shimokhin, “Nonlinear interaction of solitons and radiation”, Phys. D, 87:1–4 (1995), 201–215 | DOI | MR

[22] V. V. Kiselev, “Asimptotika dispergiruyuschikh voln v spiralnoi strukture pri bolshikh vremenakh”, TMF, 187:1 (2016), 21–38 | DOI | DOI | MR

[23] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR

[24] P. Deift, X. Zhou, “A steepest descent method for oslilatory Riemann–Hilbert problems”, Bull. Amer. Math. Soc. (N. S.), 26:1 (1992), 119–123 | DOI | MR

[25] P. Deift, X. Zhou, “A steepest descent method for oscillatory Riemann–Hilbert problem. Asymptotic for the MKdV equation”, Ann. Math., 137:2 (1993), 295–368 | DOI | MR

[26] P. Deift, A. Its, X. Zhou, “Long-time asymptotics for integrable nonlinear wave equation”, Important Developments of Soliton Theory, eds. A. S. Fokas, V. E. Zakharov, Springer, Berlin, 1993, 181–204 | MR | Zbl

[27] V. Kotlyarov, A. Minakov, “Riemann–Hilbert problem to the modified Korteveg–de Vries equation: long-time dynamics of the steplike initial data”, J. Math. Phys., 51:9 (2010), 093506, 31 pp. | DOI | MR

[28] M. Bertola, A. Minakov, “Laguerre polynomials and transitional asymptotics of the modified Korteweg–de Vries equation for step-like initial data”, Anal. Math. Phys., 9:4 (2019), 1761–1818 | DOI | MR

[29] T. Grava, A. Minakov, “On the long time asymptotic behaviour of the modified Korteweg–de Vries equation with step-like initial data”, SIAM J. Math. Anal., 52:6 (2020), 5892–5993, arXiv: 1907.11859 | DOI | MR

[30] I. Egorova, Z. Gladka, V. Kotlyarov, G. Teschl, “Long-time asymptotics for the Korteweg–de Vries equation with step-like initial data”, Nonlinearity, 26:7 (2013), 1839–1864 | DOI | MR

[31] P. A. Deift, A. R. Its, X. Zhou, “A Riemann–Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics”, Ann. Math., 146:1 (1997), 149–235 | DOI | MR

[32] F. D. Gakhov, Kraevye zadachi, Nauka, M., 1977 | DOI | MR | MR | Zbl | Zbl

[33] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR

[34] V. V. Kiselev, A. A. Raskovalov, S. V. Batalov, “Nonlinear interactions of domain walls and breathers with a spin-wave field”, Chaos Solitons Fractals, 127 (2019), 217–225 | DOI | MR

[35] H. Segur, M. J. Ablowitz, “Asymptotic solutions of nonlinear evolution equations and a Painlevé transcendent”, Phys. D, 36:1–2 (1981), 165–184 | DOI

[36] M. V. Fedoryuk, Metod perevala, Nauka, M., 1977 | MR | Zbl

[37] V. V. Kiselev, S. V. Batalov, “Relaksiruyuschie solitony dvukhosnogo ferromagnetika”, TMF, 210:1 (2022), 54–79 | DOI | DOI

[38] V. V. Kiselev, A. A. Raskovalov, “Stoyachie spinovye volny i solitony v kvaziodnomernoi spiralnoi strukture”, ZhETF, 143:2 (2013), 313–321 | DOI | DOI