Mots-clés : sine-Gordon equation
@article{TMF_2023_214_3_a4,
author = {V. V. Kiselev and S. V. Batalov},
title = {Nonlinear interference of solitons and waves in the~domain magnetic structure},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {427--468},
year = {2023},
volume = {214},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_3_a4/}
}
TY - JOUR AU - V. V. Kiselev AU - S. V. Batalov TI - Nonlinear interference of solitons and waves in the domain magnetic structure JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 427 EP - 468 VL - 214 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2023_214_3_a4/ LA - ru ID - TMF_2023_214_3_a4 ER -
V. V. Kiselev; S. V. Batalov. Nonlinear interference of solitons and waves in the domain magnetic structure. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 3, pp. 427-468. http://geodesic.mathdoc.fr/item/TMF_2023_214_3_a4/
[1] I. E. Dzyaloshinskii, “Teoriya gelikoidalnykh struktur v antiferromagnetikakh III”, ZhETF, 47:3 (1964), 992–1002
[2] Yu. A. Izyumov, “Modulirovannye ili dlinnoperiodicheskie magnitnye struktury kristallov”, UFN, 144:3 (1984), 430–470 | DOI
[3] V. G. Baryakhtar, D. A. Yablonskii, “Indutsirovanie dlinnoperiodicheskikh struktur v rombicheskikh i romboedricheskikh antiferromagnetikakh”, FTT, 24:8 (1982), 2522–2524
[4] Yu. A. Izyumov, Difraktsiya neitronov na dlinnoperiodicheskikh strukturakh, Energoatomizdat, M., 1987
[5] A. B. Borisov, V. V. Kiselev, Kvaziodnomernye magnitnye solitony, Fizmatlit, M., 2014
[6] M. K. Shirobokov, “K teorii mekhanizma namagnichivaniya ferromagnetikov”, ZhETF, 15:1–2 (1945), 57–76
[7] B. N. Filippov, A. P. Tankeev, Dinamicheskie effekty v ferromagnetikakh s domennoi strukturoi, Nauka, M., 1987
[8] A. B. Borisov, J. Kishine, Y. G. Bostrem, A. S. Ovchinnikov, “Magnetic soliton transport over topological spin texture in chiral helimagnet with strong easy-plane anisotropy”, Phys. Rev. B, 79 (2009), 134436–134446 | DOI
[9] V. V. Kiselev, A. A. Raskovalov, “Solitony elektricheskoi polyarizatsii v multiferroikakh”, Fizika tverdogo tela, 58:3 (2016), 485–490 | DOI
[10] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR
[11] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | MR | Zbl
[12] G. Beitmen, A. Eirdeii, Vysshie transtsendentnye funktsii, v. 3, Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Nauka, M., 1967 | MR | Zbl
[13] P. F. Byrd, M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, 67, Springer, Berlin, 1971 | DOI | MR | Zbl
[14] Dzh. Khirt, I. Lote, Teoriya dislokatsii, Atomizdat, M., 1972
[15] A. S. Kovalev, I. V. Gerasimchuk, “Nelineinaya lokalizatsiya vozbuzhdenii i dinamika solitonov v samomodulirovannykh sistemakh”, ZhETF, 122:5(11) (2002), 1116–1124 | DOI
[16] V. V. Kiselev, A. A. Raskovalov, “Solitons and nonlinear waves in the spiral magnetic structures”, Chaos Solitons Fractals, 84 (2016), 88–103 | DOI | MR
[17] V. V. Kiselev, A. A. Raskovalov, “Nelineinaya dinamika kvaziodnomernoi spiralnoi struktury”, TMF, 173:2 (2012), 268–292 | DOI | DOI | MR
[18] L. Martínez Alonso, “Effect of the radiation component on soliton motion”, Phys. Rev. D, 32:6 (1985), 1459–1466 | DOI | MR
[19] L. Martínez Alonso, “Soliton motion in the case of a nonzero reflection coefficient”, Phys. Rev. Lett., 54:6 (1985), 499–501 | DOI | MR
[20] E. A. Kuznetsov, A. V. Mikhailov, “Relaksatsionnye kolebaniya solitonov”, Pisma v ZhETF, 60:6 (1994), 466–470
[21] E. A. Kuznetsov, A. V. Mikhailov, I. A. Shimokhin, “Nonlinear interaction of solitons and radiation”, Phys. D, 87:1–4 (1995), 201–215 | DOI | MR
[22] V. V. Kiselev, “Asimptotika dispergiruyuschikh voln v spiralnoi strukture pri bolshikh vremenakh”, TMF, 187:1 (2016), 21–38 | DOI | DOI | MR
[23] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR
[24] P. Deift, X. Zhou, “A steepest descent method for oslilatory Riemann–Hilbert problems”, Bull. Amer. Math. Soc. (N. S.), 26:1 (1992), 119–123 | DOI | MR
[25] P. Deift, X. Zhou, “A steepest descent method for oscillatory Riemann–Hilbert problem. Asymptotic for the MKdV equation”, Ann. Math., 137:2 (1993), 295–368 | DOI | MR
[26] P. Deift, A. Its, X. Zhou, “Long-time asymptotics for integrable nonlinear wave equation”, Important Developments of Soliton Theory, eds. A. S. Fokas, V. E. Zakharov, Springer, Berlin, 1993, 181–204 | MR | Zbl
[27] V. Kotlyarov, A. Minakov, “Riemann–Hilbert problem to the modified Korteveg–de Vries equation: long-time dynamics of the steplike initial data”, J. Math. Phys., 51:9 (2010), 093506, 31 pp. | DOI | MR
[28] M. Bertola, A. Minakov, “Laguerre polynomials and transitional asymptotics of the modified Korteweg–de Vries equation for step-like initial data”, Anal. Math. Phys., 9:4 (2019), 1761–1818 | DOI | MR
[29] T. Grava, A. Minakov, “On the long time asymptotic behaviour of the modified Korteweg–de Vries equation with step-like initial data”, SIAM J. Math. Anal., 52:6 (2020), 5892–5993, arXiv: 1907.11859 | DOI | MR
[30] I. Egorova, Z. Gladka, V. Kotlyarov, G. Teschl, “Long-time asymptotics for the Korteweg–de Vries equation with step-like initial data”, Nonlinearity, 26:7 (2013), 1839–1864 | DOI | MR
[31] P. A. Deift, A. R. Its, X. Zhou, “A Riemann–Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics”, Ann. Math., 146:1 (1997), 149–235 | DOI | MR
[32] F. D. Gakhov, Kraevye zadachi, Nauka, M., 1977 | DOI | MR | MR | Zbl | Zbl
[33] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR
[34] V. V. Kiselev, A. A. Raskovalov, S. V. Batalov, “Nonlinear interactions of domain walls and breathers with a spin-wave field”, Chaos Solitons Fractals, 127 (2019), 217–225 | DOI | MR
[35] H. Segur, M. J. Ablowitz, “Asymptotic solutions of nonlinear evolution equations and a Painlevé transcendent”, Phys. D, 36:1–2 (1981), 165–184 | DOI
[36] M. V. Fedoryuk, Metod perevala, Nauka, M., 1977 | MR | Zbl
[37] V. V. Kiselev, S. V. Batalov, “Relaksiruyuschie solitony dvukhosnogo ferromagnetika”, TMF, 210:1 (2022), 54–79 | DOI | DOI
[38] V. V. Kiselev, A. A. Raskovalov, “Stoyachie spinovye volny i solitony v kvaziodnomernoi spiralnoi strukture”, ZhETF, 143:2 (2013), 313–321 | DOI | DOI