Mots-clés : Cauchy matrix method, solution.
@article{TMF_2023_214_3_a3,
author = {Ying-Ying Sun and Chen-Chen Wu and Songlin Zhao},
title = {Applications of {the~Sylvester} equation for the~lattice {BKP} system},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {410--426},
year = {2023},
volume = {214},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_3_a3/}
}
TY - JOUR AU - Ying-Ying Sun AU - Chen-Chen Wu AU - Songlin Zhao TI - Applications of the Sylvester equation for the lattice BKP system JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 410 EP - 426 VL - 214 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2023_214_3_a3/ LA - ru ID - TMF_2023_214_3_a3 ER -
Ying-Ying Sun; Chen-Chen Wu; Songlin Zhao. Applications of the Sylvester equation for the lattice BKP system. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 3, pp. 410-426. http://geodesic.mathdoc.fr/item/TMF_2023_214_3_a3/
[1] E. Date, M. Jinbo, T. Miwa, “Method for generating discrete soliton equations. I”, J. Phys. Soc. Japan, 51:12 (1982), 4116–4124 | DOI | MR
[2] F. W. Nijhoff, H. W. Capel, G. L. Wiersma, G. R. W. Quispel, “Bäcklund transformations and three-dimensional lattice equations”, Phys. Lett. A, 105:6 (1984), 267–272 | DOI | MR
[3] W. Feng, S.-L. Zhao, “Generalized Cauchy matrix approach for lattice KP-type equations”, Commun. Nonlinear Sci. Numer Simul., 18:7 (2013), 1652–1664 | DOI | MR
[4] W.-G. Zhang, Y.-W. Zhou, Y.-Y. Sun, “A lattice CKP equation expressed by the $\tau$ function”, Appl. Math. Lett., 103 (2020), 106194, 10 pp. | DOI | MR
[5] W. Fu, F. W. Nijhoff, “Direct linearizing transform for three-dimensional discrete integrable systems: the lattice AKP, BKP and CKP equations”, Proc. R. Soc. London Ser. A, 473:2203 (2017), 20160195, 22 pp. | DOI | MR
[6] T. Miwa, “On Hirota's difference equations”, Proc. Japan Acad. Ser. A, 58:1 (1982), 9–12 | DOI | MR
[7] J. Hietarinta, N. Joshi, F. W. Nijhoff, Discrete Systems and Integrability, Cambridge Univ. Press, Cambridge, 2016 | DOI | MR | Zbl
[8] B. G. Konopelchenko, W. K. Schief, “Reciprocal figures, graphical statics, and inversive geometry of the Schwarzian BKP hierarchy”, Stud. Appl. Math., 109:2 (2002), 89–124 | DOI | MR
[9] A. Doliwa, “The B-quadrilateral lattice, its transformations and the algebro-geometric construction”, J. Geom. Phys., 57:4 (2007), 1171–1192 | DOI | MR
[10] V. E. Vekslerchik, “Solitons of the $(2+2)$-dimensional Toda lattice”, J. Phys. A: Math. Theor., 52:4 (2019), 045202, 11 pp. | DOI
[11] S.-S. Li, F. W. Nijhoff, Y.-Y. Sun, D.-J. Zhang, “Symmetric discrete AKP and BKP equations”, J. Phys. A: Math. Theor., 54:7 (2021), 075201, 19 pp. | DOI | MR
[12] P. H. van der Kamp, D.-J. Zhang, G. R. W. Quispel, On the relation between the dual AKP equation and an equation by King and Schief, and its $N$-soliton solution, arXiv: 1912.02299
[13] F. W. Nijhoff, J. Atkinson, J. Hietarinta, “Soliton solutions for ABS lattice equations: I. Cauchy matrix approach”, J. Phys. A: Math. Theor., 42:40 (2009), 404005, 34 pp. | DOI | MR
[14] D.-J. Zhang, S.-L. Zhao, “Solutions to ABS lattice equations via generalized Cauchy matrix approach”, Stud. Appl. Math., 131:1 (2013), 72–103 | DOI | MR
[15] Y.-Y. Sun, D.-J. Zhang, F. W. Nijhoff, “The Sylvester equation and the elliptic Korteweg–de Vries system”, J. Math. Phys., 58:3 (2017), 033504, 25 pp. | DOI | MR
[16] S.-L. Zhao, W. Feng, Y.-Y. Jin, “Discrete analogues for two nonlinear Schrödinger type equations”, Commun. Nonlinear Sci. Numer. Simul., 72 (2019), 329–341 | DOI | MR
[17] Shuai Chzhan, Sun-Lin Chzhao, In Shi, “Diskretnoe uravnenie Ablovitsa–Kaupa–Nyuella–Sigura vtorogo poryadka i ego modifikatsiya”, TMF, 210:3 (2022), 350–374 | DOI
[18] J. J. Sylvester, “Sur l'equation en matrices $px=xq$”, C. R. Acad. Sci. Paris, 99:2 (1884), 67–71; 115–116
[19] F. W. Nijhoff, A. J. Walker, “The discrete and continuous Painlevé VI hierarchy and the Garnier system”, Glasg. Math. J., 43:A (2001), 109–123 | DOI | MR
[20] A. I. Bobenko, Yu. B. Suris, “Integrable systems on quad-graphs”, Int. Math. Res. Notices, 2002:11 (2002), 573–611 | DOI | MR