Applications of the Sylvester equation for the lattice BKP system
Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 3, pp. 410-426
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Sylvester equation plays an important role in many branches of mathematical physics. The goal of this paper is to show that a special case of the Sylvester equation can be related to the lattice B-type Kadomtsev–Petviashvili (BKP) system via the generalized Cauchy matrix method. We use the variables given in the Sylvester equation to define the $\tau$ function and several scalar functions that are closely related to the lattice BKP equation. After rederiving the lattice BKP equation, we make it clear that besides its multisoliton solutions, various other types of exact solutions also exist. Furthermore, Lax pairs for the lattice BKP equation are obtained in different ways.
Keywords: Sylvester equation, lattice BKP system
Mots-clés : Cauchy matrix method, solution.
@article{TMF_2023_214_3_a3,
     author = {Ying-Ying Sun and Chen-Chen Wu and Songlin Zhao},
     title = {Applications of {the~Sylvester} equation for the~lattice {BKP} system},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {410--426},
     year = {2023},
     volume = {214},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_3_a3/}
}
TY  - JOUR
AU  - Ying-Ying Sun
AU  - Chen-Chen Wu
AU  - Songlin Zhao
TI  - Applications of the Sylvester equation for the lattice BKP system
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 410
EP  - 426
VL  - 214
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_214_3_a3/
LA  - ru
ID  - TMF_2023_214_3_a3
ER  - 
%0 Journal Article
%A Ying-Ying Sun
%A Chen-Chen Wu
%A Songlin Zhao
%T Applications of the Sylvester equation for the lattice BKP system
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 410-426
%V 214
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2023_214_3_a3/
%G ru
%F TMF_2023_214_3_a3
Ying-Ying Sun; Chen-Chen Wu; Songlin Zhao. Applications of the Sylvester equation for the lattice BKP system. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 3, pp. 410-426. http://geodesic.mathdoc.fr/item/TMF_2023_214_3_a3/

[1] E. Date, M. Jinbo, T. Miwa, “Method for generating discrete soliton equations. I”, J. Phys. Soc. Japan, 51:12 (1982), 4116–4124 | DOI | MR

[2] F. W. Nijhoff, H. W. Capel, G. L. Wiersma, G. R. W. Quispel, “Bäcklund transformations and three-dimensional lattice equations”, Phys. Lett. A, 105:6 (1984), 267–272 | DOI | MR

[3] W. Feng, S.-L. Zhao, “Generalized Cauchy matrix approach for lattice KP-type equations”, Commun. Nonlinear Sci. Numer Simul., 18:7 (2013), 1652–1664 | DOI | MR

[4] W.-G. Zhang, Y.-W. Zhou, Y.-Y. Sun, “A lattice CKP equation expressed by the $\tau$ function”, Appl. Math. Lett., 103 (2020), 106194, 10 pp. | DOI | MR

[5] W. Fu, F. W. Nijhoff, “Direct linearizing transform for three-dimensional discrete integrable systems: the lattice AKP, BKP and CKP equations”, Proc. R. Soc. London Ser. A, 473:2203 (2017), 20160195, 22 pp. | DOI | MR

[6] T. Miwa, “On Hirota's difference equations”, Proc. Japan Acad. Ser. A, 58:1 (1982), 9–12 | DOI | MR

[7] J. Hietarinta, N. Joshi, F. W. Nijhoff, Discrete Systems and Integrability, Cambridge Univ. Press, Cambridge, 2016 | DOI | MR | Zbl

[8] B. G. Konopelchenko, W. K. Schief, “Reciprocal figures, graphical statics, and inversive geometry of the Schwarzian BKP hierarchy”, Stud. Appl. Math., 109:2 (2002), 89–124 | DOI | MR

[9] A. Doliwa, “The B-quadrilateral lattice, its transformations and the algebro-geometric construction”, J. Geom. Phys., 57:4 (2007), 1171–1192 | DOI | MR

[10] V. E. Vekslerchik, “Solitons of the $(2+2)$-dimensional Toda lattice”, J. Phys. A: Math. Theor., 52:4 (2019), 045202, 11 pp. | DOI

[11] S.-S. Li, F. W. Nijhoff, Y.-Y. Sun, D.-J. Zhang, “Symmetric discrete AKP and BKP equations”, J. Phys. A: Math. Theor., 54:7 (2021), 075201, 19 pp. | DOI | MR

[12] P. H. van der Kamp, D.-J. Zhang, G. R. W. Quispel, On the relation between the dual AKP equation and an equation by King and Schief, and its $N$-soliton solution, arXiv: 1912.02299

[13] F. W. Nijhoff, J. Atkinson, J. Hietarinta, “Soliton solutions for ABS lattice equations: I. Cauchy matrix approach”, J. Phys. A: Math. Theor., 42:40 (2009), 404005, 34 pp. | DOI | MR

[14] D.-J. Zhang, S.-L. Zhao, “Solutions to ABS lattice equations via generalized Cauchy matrix approach”, Stud. Appl. Math., 131:1 (2013), 72–103 | DOI | MR

[15] Y.-Y. Sun, D.-J. Zhang, F. W. Nijhoff, “The Sylvester equation and the elliptic Korteweg–de Vries system”, J. Math. Phys., 58:3 (2017), 033504, 25 pp. | DOI | MR

[16] S.-L. Zhao, W. Feng, Y.-Y. Jin, “Discrete analogues for two nonlinear Schrödinger type equations”, Commun. Nonlinear Sci. Numer. Simul., 72 (2019), 329–341 | DOI | MR

[17] Shuai Chzhan, Sun-Lin Chzhao, In Shi, “Diskretnoe uravnenie Ablovitsa–Kaupa–Nyuella–Sigura vtorogo poryadka i ego modifikatsiya”, TMF, 210:3 (2022), 350–374 | DOI

[18] J. J. Sylvester, “Sur l'equation en matrices $px=xq$”, C. R. Acad. Sci. Paris, 99:2 (1884), 67–71; 115–116

[19] F. W. Nijhoff, A. J. Walker, “The discrete and continuous Painlevé VI hierarchy and the Garnier system”, Glasg. Math. J., 43:A (2001), 109–123 | DOI | MR

[20] A. I. Bobenko, Yu. B. Suris, “Integrable systems on quad-graphs”, Int. Math. Res. Notices, 2002:11 (2002), 573–611 | DOI | MR