@article{TMF_2023_214_3_a2,
author = {Jia-Qi Song and Chong Li and Ji-Peng Cheng and Min-Ru Chen},
title = {Constrained discrete {KP} hierarchy: the~constraint on the~tau functions and gauge transformations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {387--409},
year = {2023},
volume = {214},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_3_a2/}
}
TY - JOUR AU - Jia-Qi Song AU - Chong Li AU - Ji-Peng Cheng AU - Min-Ru Chen TI - Constrained discrete KP hierarchy: the constraint on the tau functions and gauge transformations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 387 EP - 409 VL - 214 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2023_214_3_a2/ LA - ru ID - TMF_2023_214_3_a2 ER -
%0 Journal Article %A Jia-Qi Song %A Chong Li %A Ji-Peng Cheng %A Min-Ru Chen %T Constrained discrete KP hierarchy: the constraint on the tau functions and gauge transformations %J Teoretičeskaâ i matematičeskaâ fizika %D 2023 %P 387-409 %V 214 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2023_214_3_a2/ %G ru %F TMF_2023_214_3_a2
Jia-Qi Song; Chong Li; Ji-Peng Cheng; Min-Ru Chen. Constrained discrete KP hierarchy: the constraint on the tau functions and gauge transformations. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 3, pp. 387-409. http://geodesic.mathdoc.fr/item/TMF_2023_214_3_a2/
[1] B. A. Kupershmidt, Discrete Lax Equations and Differential-Difference Calculus, Astérisque, 123, Soc. Math. France, Paris, 1985 | MR
[2] L. Haine, P. Iliev, “Commutative rings of difference operators and an adelic flag manifold”, Internat. Math. Res. Notices, 2000:6 (2000), 281–323 | DOI | MR | Zbl
[3] S. Liu, Y. Cheng, “Sato's Bäcklund transformation, additional symmtries and ASvM formular for the discrete KP hierarchy”, J. Phys. A: Math. Theor., 43:13 (2010), 135202, 17 pp. | DOI | MR
[4] X. Wang, J. Zhu, Z. Qiao, “New solutions to the differential-difference KP equation”, Appl. Math. Lett., 113 (2021), 106836 | DOI | MR
[5] J. Cheng, J. He, “Miura and auto-Bäcklund transformations for the discrete KP and mKP hierarchies and their constrained cases”, Commun. Nonlinear Sci. Numer. Simul., 69 (2019), 187–197 | DOI | MR
[6] S. Jian, J. Cheng, “The squared eigenfunction symmetries of the discrete KP and modified discrete KP hierarchies under the Miura transformations”, Modern Phys. Lett. B, 32:27 (2018), 1850326, 20 pp. | DOI | MR
[7] S. W. Liu, Y. Cheng, J. S. He, “The determinant representation of the gauge transformation for the discrete KP hierarchy”, Sci. China Math., 53:5 (2010), 1195–1206 | DOI | MR
[8] C. Li, J. Cheng, K. Tian, M. Li, J. He, “Ghost symmetry of the discrete KP hierarchy”, Monatsh. Math., 180:4 (2016), 815–832 | DOI | MR
[9] X.-L. Sun, D.-J. Zhang, X.-Y. Zhu, D.-Y. Chen, “Symmetries and Lie algebra of the differential-difference Kadomstev–Petviashvili hierarchy”, Modern Phys. Lett. B, 24:10 (2010), 1033–1042 | DOI | MR
[10] M. Adler, P. van Moerbeke, “Vertex operator solutions to the discrete KP-hierarchy”, Commun. Math. Phys., 203:1 (1999), 185–210, arXiv: solv-int/9912014 | DOI | MR
[11] L. A. Dickey, “Modified KP and discrete KP”, Lett. Math. Phys., 48:3 (1999), 277–289 | DOI | MR
[12] H. Aratyn, E. Nissimov, S. Pacheva, “Method of squared eigenfunction potentials in integrable hierarchies of KP type”, Commun. Math. Phys., 193:3 (1998), 493–525 | DOI | MR | Zbl
[13] M. J. Ablowitz, B. Prinari, A. D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems, London Mathematical Society Lecture Note Series, 302, Cambridge Univ. Press, Cambridge, 2004 | MR
[14] M. Li, C. Li, K. Tian, J. He, Y. Cheng, “Virasoro type algebraic structure hidden in the constrained discrete Kadomtsev–Petviashvili hierarchy”, J. Math. Phys., 54:4 (2013), 043512, 11 pp. | DOI | MR
[15] J. Cheng, J. He, “The full Virasoro symmetry for the constrained discrete KP hierarchy”, Chinese Ann. Math. Ser. A, 41:1 (2020), 17–38 (in Chinese) | MR
[16] L.-L. Chau, J. C. Shaw, H. C. Yen, “Solving the KP hierarchy by gauge transformations”, Commun. Math. Phys., 149:2 (1992), 263–278 | DOI | MR
[17] L.-L. Chau, J.-C. Shaw, M.-H. Tu, “Solving the constrained KP hierarchy by gauge transformations”, J. Math. Phys., 38:8 (1997), 4128–4137 | DOI | MR
[18] H. Aratyn, E. Nissimov, S. Pacheva, “Constrained KP hierarchies: additional symmetries, Darboux–Bäcklund solutions and relations to multi-matrix models”, Internat. J. Modern Phys. A, 12:7 (1997), 1265–1340 | DOI | MR
[19] J. He, Y. Li, Y. Cheng, “Two choices of the gauge transformation for the AKNS hierarchy through the constrained KP hierarchy”, J. Math. Phys., 44:9 (2003), 3928–3960 | DOI | MR
[20] W. Oevel, “Darboux theorems and Wronskian formulas for integrable system I: constrained KP flows”, Phys. A, 195:3–4 (1993), 533–576 | DOI | MR
[21] W. Oevel, “Darboux transformations for integrable lattice systems”, Nonlinear Physics: Theory and Experiment, Proceedings of the First Workshop on Nonlinear Physics, Theory and Experiment: Nature, Structure and Properties of Nonlinear Phenomena (Le Siernuse, Gallipoli (Lecce), Italy, June 29 –July 7, 1995), eds. E. Alfinito, M. Boiti, L. Martina, F. Pempinelli, World Sci., Singapore, 1996, 233–240 | MR
[22] M. Li, J. Cheng, J. He, “The gauge transformation of the constrained semi-discrete KP hierarchy”, Modern Phys. Lett. B, 27:6 (2013), 1350043, 13 pp. | DOI | MR
[23] A. Kundu, W. Strampp, W. Oevel, “Gauge transformations of constrained KP flows: new integrable hierarchies”, J. Math. Phys., 36:6 (1995), 2972–2984 | DOI | MR