Multisoliton solutions of the~two-component Camassa--Holm equation and its reductions
Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 3, pp. 359-386
Voir la notice de l'article provenant de la source Math-Net.Ru
The Bäcklund transformation for an integrable two-component Camassa–Holm ($2$CH) equation is presented and studied. It involves both dependent and independent variables. A nonlinear superposition formula is given for constructing multisoliton, multiloop, and multikink solutions of the $2$CH equation. We also present solutions of the Camassa–Holm equation, the two-component Hunter–Saxton ($2$HS) equation, and the Hunter–Saxton equation, which all arise from solutions of the $2$CH equation. By appropriate limit procedures, a solution of the $2$HS equation is successfully obtained from that of the $2$CH equation, which is worked out with the method of Bäcklund transformations. By analyzing the solution, we obtain the soliton and loop solutions for $2$HS equation.
Keywords:
two-component Camassa–Holm equation, two-component Hunter–Saxton equation, Bäcklund transformation, reduction.
Mots-clés : soliton
Mots-clés : soliton
@article{TMF_2023_214_3_a1,
author = {Gaihua Wang},
title = {Multisoliton solutions of the~two-component {Camassa--Holm} equation and its reductions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {359--386},
publisher = {mathdoc},
volume = {214},
number = {3},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_3_a1/}
}
TY - JOUR AU - Gaihua Wang TI - Multisoliton solutions of the~two-component Camassa--Holm equation and its reductions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 359 EP - 386 VL - 214 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2023_214_3_a1/ LA - ru ID - TMF_2023_214_3_a1 ER -
Gaihua Wang. Multisoliton solutions of the~two-component Camassa--Holm equation and its reductions. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 3, pp. 359-386. http://geodesic.mathdoc.fr/item/TMF_2023_214_3_a1/