Majorana tower and cellular automaton interpretation of quantum mechanics down to Planck scales
Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 308-317 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A deterministic reformulation of quantum mechanics is thought to be able to bypass the usual philosophical interpretations of probability and stochasticity of the standard quantum mechanical scenarios. Recently 't Hooft proposed a different perspective based on the ontological formulation of quantum mechanics, obtained by writing the Hamiltonian of a quantum system in a way to render it mathematically equivalent to a deterministic system. The ontological deterministic models consist of elementary cells, also called cellular automata, inside which the quantities describing the dynamics oscillate in periodic orbits, extending and replacing the quantum mechanical classical language based on harmonic oscillators. We show that the structure of the cellular automaton sets finds a clear physical interpretation with the Majorana infinite-component equation: the cellular automata are elementary building blocks generated by the Poincaré group of spacetime transformations with positive-definite energy down to the Planck scales, with a close relation to the Riemann Hypothesis.
Keywords: Majorana tower, quantum mechanics, ontological quantum mechanics.
@article{TMF_2023_214_2_a9,
     author = {F. Tamburini and I. Licata},
     title = {Majorana tower and cellular automaton interpretation of quantum mechanics down to {Planck} scales},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {308--317},
     year = {2023},
     volume = {214},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a9/}
}
TY  - JOUR
AU  - F. Tamburini
AU  - I. Licata
TI  - Majorana tower and cellular automaton interpretation of quantum mechanics down to Planck scales
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 308
EP  - 317
VL  - 214
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a9/
LA  - ru
ID  - TMF_2023_214_2_a9
ER  - 
%0 Journal Article
%A F. Tamburini
%A I. Licata
%T Majorana tower and cellular automaton interpretation of quantum mechanics down to Planck scales
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 308-317
%V 214
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a9/
%G ru
%F TMF_2023_214_2_a9
F. Tamburini; I. Licata. Majorana tower and cellular automaton interpretation of quantum mechanics down to Planck scales. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 308-317. http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a9/

[1] P. Marage, G. Wallenborn, “The Debate between Einstein and Bohr, or how to interpret quantum mechanics”, The Solvay Councils and the Birth of Modern Physics, Science Networks. Historical Studies, 22, eds. P. Marage, G. Wallenborn, Birkhäuser, Basel, 1999, 161–174 | DOI

[2] J. S. Bell, “On the Einstein Podolsky Rosen paradox”, Phys. Phys. Fiz., 1:3 (1964), 195–200 | DOI | MR

[3] J. S. Bell, Speakable and Unspeakable in Quantum Mechanics, Collected Papers on Quantum Philosophy, Cambridge Univ. Press, Cambridge, 2004 | DOI | MR

[4] M. Bell, S. Gao (eds.), Quantum Nonlocality and Reality: 50 Years of Bell's Theorem, Cambridge Univ. Press, Cambridge, 2016 | DOI

[5] V. Scarani, Bell Nonlocality, Oxford Univ. Press, Oxford, 2019 | DOI | MR

[6] D. Bohm, “A suggested interpretation of the quantum theory in terms of “hidden” variables. I”, Phys. Rev., 85:2 (1952), 166–179 | DOI | MR

[7] G. 't Hooft, “Deterministic quantum mechanics: the mathematical equations”, Submitted to the Article Collection: “Towards a Local Realist View of the Quantum Phenomenon”, Front. Phys. Physics, 8 (2020), 253, 12 pp. | DOI

[8] I. Licata, “Quantum mechanics interpretation on Planck scale”, Ukr. J. Phys., 65:1 (2020), 17–30 | DOI

[9] P. A. M. Dirak, Printsipy kvantovoi mekhaniki, Nauka, M., 1979 | MR | MR | Zbl

[10] S. Hossenfelder, “Testing super-deterministic hidden variables theories”, Found. Phys., 41:9 (2011), 1521–1531, arXiv: ; “Testing superdeterministic conspiracy”, J. Phys.: Conf. Ser., 504 (2014), 012018, 5 pp. 1105.4326 | DOI | MR | DOI

[11] S. Hossenfelder, T. Palmer, “Rethinking Superdeterminism”, Front. Phys., 8 (2020), 139, 13 pp. | DOI

[12] R. A. Bertlmann, A. Zeilinger (eds.), Quantum (Un)speakables: From Bell to Quantum Information, Springer, Berlin, 2002 ; Quantum (Un)speakables II. Half a Century of Bell's Theorem, Springer, Cham, 2017 | DOI | MR | DOI | MR

[13] A. Einstein, B. Podolsky, N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?”, Phys. Rev., 47:10 (1935), 777–780 | DOI

[14] G. 't Hooft, Explicit construction of Local Hidden Variables for any quantum theory up to any desired accuracy, arXiv: 2103.04335

[15] G. 't Hooft, The Cellular Automaton Interpretation of Quantum Mechanics, Fundamental Theories of Physics, 185, Springer, Cham, 2016 | DOI | MR

[16] D. Schumayer, D. A. W. Hutchinson, “Colloquium: Physics of the Riemann hypothesis”, Rev. Modern Phys., 83:2 (2011), 307–330 ; Erratum, 769–769 | DOI

[17] E. Majorana, “Teoria relativistica di particelle con momentum internisico arbitrario”, Nuovo Cimento, 9:10 (1932), 335–344 | DOI

[18] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 2, Teoriya polya, Fizmatlit, M., 1988 | MR

[19] F. Tamburini, I. Licata, B. Thidé, “Relativistic Heisenberg principle for vortices of light from Planck to Hubble scales”, Phys. Rev. Res., 2:3 (2020), 033343, 5 pp. | DOI

[20] F. Tamburini, I. Licata, “Majorana quanta, string scattering, curved spacetimes and the Riemann Hypothesis”, Phys. Scr., 96:12 (2021), 125276, 26 pp. | DOI

[21] M. V. Berry, J. P. Keating, “The Riemann zeros and eigenvalues asymptotics”, SIAM Rev., 41:2 (1999), 236–266 | DOI | MR

[22] M. V. Berry, J. P. Keating, “$H=xp$ and the Riemann zeros”, Supersymmetry and Trace Formulae: Chaos and Disorder, Cambridge, UK, September 8–20, 1997, NATO Science Series B, 370, eds. I. V. Lerner, J. P. Keating, D. E. Khmelnitskii, Kluwer Academic Press, New York, 1999, 355–367 | DOI

[23] A. Connes, “Trace formula in noncommutative geometry and the zeros of the Riemann zeta function”, Selecta Math. (N. S.), 5:1 (1999), 29–106 | DOI | MR

[24] A. Strumia, “Interpretation of quantum mechanics with indefinite norm”, Physics, 1:1 (2019), 17–32 | DOI

[25] C. M. Bender, D. C. Brody, M. P. Müller, “Hamiltonian for the zeros of the Riemann zeta function”, Phys. Rev. Lett., 118:13 (2017), 130201, 5 pp., arXiv: 1608.03679 | DOI | MR

[26] R. de la Madrid, “The role of the rigged Hilbert space in quantum mechanics”, Eur. J. Phys., 28:2 (2005), 287–312, arXiv: quant-ph/0502053 | DOI | MR

[27] F. Tamburini, I. Licata, “General relativistic wormhole connections from Planck-scales and the ER=EPR conjecture”, Entropy, 22:1 (2020), 3, 14 pp. | DOI | MR

[28] I. Licata, “The big computer. Complexity and computability in physical universe”, Determinism, Holism, and Complexity, eds. V. Benci, P. Cerrai, P. Freguglia, G. Israel, C. Pellegrini, Springer, New York, 2003, 117–123 | DOI

[29] G. Preparata, S.-S. Xue, “The standard model on Planck lattice: mixing angles vs quark masses”, Nuovo Cimento A, 109:10 (1996), 1455–1460 | DOI

[30] G. Preparata, S.-S. Xue, “Do we live on a lattice? Fermion masses from the Planck mass”, Phys. Lett. B, 264:1–2 (1991), 35–38 | DOI

[31] G. Preparata, “Quantum gravity, the Planck lattice and the Standard Model”, Proceedings of the VII Marcel Grossman Meeting on General Relativity (Stanford, July 24–30, 1994), eds. R. Ruffini, G. Mac Keiser, R. T. Jantzen, World Sci., Singapore, 1997, 102–115, arXiv: hep-th/9503102

[32] J. Magueijo, A Brilliant Darkness: The Extraordinary Life and Mysterious Disappearance of Ettore Majorana, the Troubled Genius of the Nuclear Age, Basic Books, New York, 2009

[33] R. Casalbuoni, “Majorana and the infinite component wave equations”, PoS (EMC2006), 37 (2007), 004, 15 pp., arXiv: hep-th/0610252 | DOI

[34] S. W. Hawking, M. J. Perry, A. Strominger, “Soft hair on black holes”, Phys. Rev. Lett., 116:23 (2016), 231301, 9 pp. | DOI

[35] S. W. Hawking, “Black hole explosions?”, Nature, 248:5443 (1974), 30–31 | DOI

[36] F. Tamburini, M. D. Laurentis, I. Licata, B. Thidé, “Twisted soft photon hair implants on black holes”, Entropy, 19:9 (2017), 458, 9 pp. | DOI