Theory of the anticontinuous limit for spin Hamiltonians. Search for discrete breather modes
Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 291-307
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We generalize the theory of extending breather solutions in the anticontinuous limit to the case of discrete spin systems. We formulate necessary conditions and determine the upper bound for the intersite coupling constant for which the extension procedure is possible. Using a numerical algorithm, we obtain breather modes of a discrete spin chain related to single-site and two-site excitations of the anticontinuous limit and show their linear stability.
Keywords: discrete breather, spin system, anticontinuous limit.
@article{TMF_2023_214_2_a8,
     author = {I. G. Bostrem and A. S. Ovchinnikov and E. G. Ekomasov and Vl. E. Sinitsyn and A. E. Fedorov and A. A. Voronina},
     title = {Theory of the~anticontinuous limit for spin {Hamiltonians.} {Search} for discrete breather modes},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {291--307},
     year = {2023},
     volume = {214},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a8/}
}
TY  - JOUR
AU  - I. G. Bostrem
AU  - A. S. Ovchinnikov
AU  - E. G. Ekomasov
AU  - Vl. E. Sinitsyn
AU  - A. E. Fedorov
AU  - A. A. Voronina
TI  - Theory of the anticontinuous limit for spin Hamiltonians. Search for discrete breather modes
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 291
EP  - 307
VL  - 214
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a8/
LA  - ru
ID  - TMF_2023_214_2_a8
ER  - 
%0 Journal Article
%A I. G. Bostrem
%A A. S. Ovchinnikov
%A E. G. Ekomasov
%A Vl. E. Sinitsyn
%A A. E. Fedorov
%A A. A. Voronina
%T Theory of the anticontinuous limit for spin Hamiltonians. Search for discrete breather modes
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 291-307
%V 214
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a8/
%G ru
%F TMF_2023_214_2_a8
I. G. Bostrem; A. S. Ovchinnikov; E. G. Ekomasov; Vl. E. Sinitsyn; A. E. Fedorov; A. A. Voronina. Theory of the anticontinuous limit for spin Hamiltonians. Search for discrete breather modes. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 291-307. http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a8/

[1] S. Flach, A. V. Gorbach, “Discrete breather – Advances in theory and applications”, Phys. Rep., 467:1–3 (2008), 1–116 | DOI

[2] S. V. Dmitriev, B. A. Korznikova, Yu. A. Baimova, M. G. Velarde, “Diskretnye brizery v kristallakh”, UFN, 186:5 (2016), 471–488 | DOI | DOI

[3] J. Cuevas-Maraver, P. G. Kevrekidis, F. Williams (eds.), The sine-Gordon Model and its Applications. From Pendula and Josephson Junctions to Gravity and High-Energy Physics, Nonlinear Systems and Complexity, 10, Springer, Cham, 2014 | DOI | MR

[4] R. S. MacKay, S. Aubry, “Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators”, Nonlinearity, 7:6 (1994), 1623–1643 | DOI | MR

[5] J. L. Marín, S. Aubry, “Breathers in nonlinear lattices: numerical calculation from the anticontinuous limit”, Nonlinearity, 9:6 (1996), 1501–1528 | DOI | MR

[6] S. Aubry, “Breathers in nonlinear lattices: Existence, linear stability and quantization”, Phys. D, 103:1–4 (1997), 201–250 | DOI | MR

[7] G. Kopidakis, S. Aubry, “Intraband discrete breathers in disordered nonlinear systems. I. Delocalization”, Phys. D, 130:3–4 (1999), 155–186 | DOI | MR | Zbl

[8] G. Kopidakis, S. Aubry, “Intraband discrete breathers in disordered nonlinear systems. II. Localization”, Phys. D, 139:3–4 (2000), 247–275 | DOI | MR

[9] G. Kopidakis, S. Aubry, “Discrete breathers and delocalization in nonlinear disordered systems”, Phys. Rev. Lett., 84:15 (2000), 3236–3239 | DOI

[10] M. Johansson, S. Aubry, “Existence and stability of quasiperiodic breathers in the discrete nonlinear Schrödinger equation”, Nonlinearity, 10:5 (1997), 1151–1178 | DOI | MR

[11] I. G. Bostrem, E. G. Ekomasov, J. Kishine, A. S. Ovchinnikov, V. E. Sinitsyn, “Dark discrete breather modes in a monoaxial chiral helimagnet with easy-plane anisotropy”, Phys. Rev. B, 104:21 (2021), 214420, 12 pp., arXiv: 2112.04341 | DOI

[12] I. G. Bostrem, Vl. E. Sinitsyn, A. S. Ovchinnikov, E. G. Ekomasov, J. Kishine, “Discrete magnetic breathers in monoaxial chiral helimagnet”, AIP Advances, 11:1 (2021), 015208, 6 pp. | DOI

[13] J. Villain, “Quantum theory of one- and two-dimensional ferro- and antiferromagnets with an easy magnetization plane. I. Ideal 1-D or 2-D lattices without in-plane anisotropy”, J. Phys. France, 35:1 (1974), 27–47 | DOI

[14] A. J. Sievers, S. Takeno, “Intrinsic localized modes in anharmonic crystals”, Phys. Rev. Lett., 61:8 (1988), 970–973 | DOI

[15] J. B. Page, “Asymptotic solutions for localized vibrational modes in strongly anharmonic periodic systems”, Phys. Rev. B, 41:11 (1990), 7835–7838 | DOI

[16] J. L. Marín, S. Aubry, L. M. Floría, “Intrinsic localized modes: Discrete breathers. Existence and linear stability”, Phys. D, 113:2–4 (1998), 283–292 | DOI

[17] J. F. R. Archilla, J. Cuevas, B. Sánchez-Rey, A. Alvarez, “Demonstration of the stability or instability of multibreathers at low coupling”, Phys. D, 180:3–4 (2003), 235–255, arXiv: nlin/0208014 | DOI | MR

[18] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | DOI | MR | MR | Zbl

[19] V. I. Arnold, A. Avets, Ergodicheskie problemy klassicheskoi mekhaniki, Regulyarnaya i khaoticheskaya dinamika, 11, Izhevskaya respublikanskaya tipografiya, Izhevsk, 1999 | MR | Zbl | Zbl

[20] M. G. Krein, “Obobschenie nekotorykh issledovanii A. M. Lyapunova o lineinykh differentsialnykh uravneniyakh s periodicheskimi koeffitsientami”, Dokl. AN SSSR, 73:3 (1950), 445–448 | MR | Zbl