@article{TMF_2023_214_2_a8,
author = {I. G. Bostrem and A. S. Ovchinnikov and E. G. Ekomasov and Vl. E. Sinitsyn and A. E. Fedorov and A. A. Voronina},
title = {Theory of the~anticontinuous limit for spin {Hamiltonians.} {Search} for discrete breather modes},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {291--307},
year = {2023},
volume = {214},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a8/}
}
TY - JOUR AU - I. G. Bostrem AU - A. S. Ovchinnikov AU - E. G. Ekomasov AU - Vl. E. Sinitsyn AU - A. E. Fedorov AU - A. A. Voronina TI - Theory of the anticontinuous limit for spin Hamiltonians. Search for discrete breather modes JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 291 EP - 307 VL - 214 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a8/ LA - ru ID - TMF_2023_214_2_a8 ER -
%0 Journal Article %A I. G. Bostrem %A A. S. Ovchinnikov %A E. G. Ekomasov %A Vl. E. Sinitsyn %A A. E. Fedorov %A A. A. Voronina %T Theory of the anticontinuous limit for spin Hamiltonians. Search for discrete breather modes %J Teoretičeskaâ i matematičeskaâ fizika %D 2023 %P 291-307 %V 214 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a8/ %G ru %F TMF_2023_214_2_a8
I. G. Bostrem; A. S. Ovchinnikov; E. G. Ekomasov; Vl. E. Sinitsyn; A. E. Fedorov; A. A. Voronina. Theory of the anticontinuous limit for spin Hamiltonians. Search for discrete breather modes. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 291-307. http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a8/
[1] S. Flach, A. V. Gorbach, “Discrete breather – Advances in theory and applications”, Phys. Rep., 467:1–3 (2008), 1–116 | DOI
[2] S. V. Dmitriev, B. A. Korznikova, Yu. A. Baimova, M. G. Velarde, “Diskretnye brizery v kristallakh”, UFN, 186:5 (2016), 471–488 | DOI | DOI
[3] J. Cuevas-Maraver, P. G. Kevrekidis, F. Williams (eds.), The sine-Gordon Model and its Applications. From Pendula and Josephson Junctions to Gravity and High-Energy Physics, Nonlinear Systems and Complexity, 10, Springer, Cham, 2014 | DOI | MR
[4] R. S. MacKay, S. Aubry, “Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators”, Nonlinearity, 7:6 (1994), 1623–1643 | DOI | MR
[5] J. L. Marín, S. Aubry, “Breathers in nonlinear lattices: numerical calculation from the anticontinuous limit”, Nonlinearity, 9:6 (1996), 1501–1528 | DOI | MR
[6] S. Aubry, “Breathers in nonlinear lattices: Existence, linear stability and quantization”, Phys. D, 103:1–4 (1997), 201–250 | DOI | MR
[7] G. Kopidakis, S. Aubry, “Intraband discrete breathers in disordered nonlinear systems. I. Delocalization”, Phys. D, 130:3–4 (1999), 155–186 | DOI | MR | Zbl
[8] G. Kopidakis, S. Aubry, “Intraband discrete breathers in disordered nonlinear systems. II. Localization”, Phys. D, 139:3–4 (2000), 247–275 | DOI | MR
[9] G. Kopidakis, S. Aubry, “Discrete breathers and delocalization in nonlinear disordered systems”, Phys. Rev. Lett., 84:15 (2000), 3236–3239 | DOI
[10] M. Johansson, S. Aubry, “Existence and stability of quasiperiodic breathers in the discrete nonlinear Schrödinger equation”, Nonlinearity, 10:5 (1997), 1151–1178 | DOI | MR
[11] I. G. Bostrem, E. G. Ekomasov, J. Kishine, A. S. Ovchinnikov, V. E. Sinitsyn, “Dark discrete breather modes in a monoaxial chiral helimagnet with easy-plane anisotropy”, Phys. Rev. B, 104:21 (2021), 214420, 12 pp., arXiv: 2112.04341 | DOI
[12] I. G. Bostrem, Vl. E. Sinitsyn, A. S. Ovchinnikov, E. G. Ekomasov, J. Kishine, “Discrete magnetic breathers in monoaxial chiral helimagnet”, AIP Advances, 11:1 (2021), 015208, 6 pp. | DOI
[13] J. Villain, “Quantum theory of one- and two-dimensional ferro- and antiferromagnets with an easy magnetization plane. I. Ideal 1-D or 2-D lattices without in-plane anisotropy”, J. Phys. France, 35:1 (1974), 27–47 | DOI
[14] A. J. Sievers, S. Takeno, “Intrinsic localized modes in anharmonic crystals”, Phys. Rev. Lett., 61:8 (1988), 970–973 | DOI
[15] J. B. Page, “Asymptotic solutions for localized vibrational modes in strongly anharmonic periodic systems”, Phys. Rev. B, 41:11 (1990), 7835–7838 | DOI
[16] J. L. Marín, S. Aubry, L. M. Floría, “Intrinsic localized modes: Discrete breathers. Existence and linear stability”, Phys. D, 113:2–4 (1998), 283–292 | DOI
[17] J. F. R. Archilla, J. Cuevas, B. Sánchez-Rey, A. Alvarez, “Demonstration of the stability or instability of multibreathers at low coupling”, Phys. D, 180:3–4 (2003), 235–255, arXiv: nlin/0208014 | DOI | MR
[18] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | DOI | MR | MR | Zbl
[19] V. I. Arnold, A. Avets, Ergodicheskie problemy klassicheskoi mekhaniki, Regulyarnaya i khaoticheskaya dinamika, 11, Izhevskaya respublikanskaya tipografiya, Izhevsk, 1999 | MR | Zbl | Zbl
[20] M. G. Krein, “Obobschenie nekotorykh issledovanii A. M. Lyapunova o lineinykh differentsialnykh uravneniyakh s periodicheskimi koeffitsientami”, Dokl. AN SSSR, 73:3 (1950), 445–448 | MR | Zbl