Extended plethystic vertex operators and plethystic universal characters
Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 276-290

Voir la notice de l'article provenant de la source Math-Net.Ru

By means of plethystic-type fermions and plethystic-type boson–fermion correspondence, which is a generalization of the classical boson–fermion correspondence, we obtain a two-component twisted plethystic-type symmetric functions $S_{[\lambda,\mu]}^{(\alpha,\beta)}$ from an $(\alpha,\beta)$-type boson–fermion correspondence, similarly to how the universal character $S_{[\lambda,\mu]}$ is derived from the classical boson–fermion correspondence (the twisted Jacobi–Trudi formula). As a generalization of the universal character hierarchy, we then construct the $(\alpha,\beta)$-type plethystic universal character hierarchy that contains a series of nonlinear partial differential equations of infinite order, and obtain its tau functions and Plücker relations.
Mots-clés : boson–fermion correspondence, plethystic-type fermions, Plücker relation.
Keywords: plethystic-type symmetric functions, plethystic universal character hierarchy
@article{TMF_2023_214_2_a7,
     author = {Chuanzhong Li and Yong Zhang and Huanhe Dong},
     title = {Extended plethystic vertex operators and plethystic universal characters},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {276--290},
     publisher = {mathdoc},
     volume = {214},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a7/}
}
TY  - JOUR
AU  - Chuanzhong Li
AU  - Yong Zhang
AU  - Huanhe Dong
TI  - Extended plethystic vertex operators and plethystic universal characters
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 276
EP  - 290
VL  - 214
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a7/
LA  - ru
ID  - TMF_2023_214_2_a7
ER  - 
%0 Journal Article
%A Chuanzhong Li
%A Yong Zhang
%A Huanhe Dong
%T Extended plethystic vertex operators and plethystic universal characters
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 276-290
%V 214
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a7/
%G ru
%F TMF_2023_214_2_a7
Chuanzhong Li; Yong Zhang; Huanhe Dong. Extended plethystic vertex operators and plethystic universal characters. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 276-290. http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a7/