Extended plethystic vertex operators and plethystic universal characters
Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 276-290
Voir la notice de l'article provenant de la source Math-Net.Ru
By means of plethystic-type fermions and plethystic-type boson–fermion correspondence, which is a generalization of the classical boson–fermion correspondence, we obtain a two-component twisted plethystic-type symmetric functions $S_{[\lambda,\mu]}^{(\alpha,\beta)}$ from an $(\alpha,\beta)$-type boson–fermion correspondence, similarly to how the universal character $S_{[\lambda,\mu]}$ is derived from the classical boson–fermion correspondence (the twisted Jacobi–Trudi formula). As a generalization of the universal character hierarchy, we then construct the $(\alpha,\beta)$-type plethystic universal character hierarchy that contains a series of nonlinear partial differential equations of infinite order, and obtain its tau functions and Plücker relations.
Mots-clés :
boson–fermion correspondence, plethystic-type fermions, Plücker relation.
Keywords: plethystic-type symmetric functions, plethystic universal character hierarchy
Keywords: plethystic-type symmetric functions, plethystic universal character hierarchy
@article{TMF_2023_214_2_a7,
author = {Chuanzhong Li and Yong Zhang and Huanhe Dong},
title = {Extended plethystic vertex operators and plethystic universal characters},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {276--290},
publisher = {mathdoc},
volume = {214},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a7/}
}
TY - JOUR AU - Chuanzhong Li AU - Yong Zhang AU - Huanhe Dong TI - Extended plethystic vertex operators and plethystic universal characters JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 276 EP - 290 VL - 214 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a7/ LA - ru ID - TMF_2023_214_2_a7 ER -
%0 Journal Article %A Chuanzhong Li %A Yong Zhang %A Huanhe Dong %T Extended plethystic vertex operators and plethystic universal characters %J Teoretičeskaâ i matematičeskaâ fizika %D 2023 %P 276-290 %V 214 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a7/ %G ru %F TMF_2023_214_2_a7
Chuanzhong Li; Yong Zhang; Huanhe Dong. Extended plethystic vertex operators and plethystic universal characters. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 276-290. http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a7/