Structure of the~canonical uniton factorization of a~solution of a~noncommutative unitary sigma model
Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 268-275
Voir la notice de l'article provenant de la source Math-Net.Ru
It is known that each solution $\Phi$ with a nonzero finite energy can be represented up to a multiplicative constant as a composition of finitely many reflections of the special form $\Phi = e^{i\theta}(I-2P_1) \dots (I-2P_n)$. This representation is called the canonical uniton factorization. Orthogonal projections $P_1, \dots, P_n$, called unitons, have finite-dimensional images $\alpha_1, \dots, \alpha_n$. We show that for $1\le j\le n$, the subspaces $\alpha_1+\dots+\alpha_j$ are invariant under the annihilation operator, and the annihilation operator eigenvalues coincide on these subspaces.
Keywords:
canonical uniton factorization, noncommutative sigma model.
@article{TMF_2023_214_2_a6,
author = {V. V. Bekresheva},
title = {Structure of the~canonical uniton factorization of a~solution of a~noncommutative unitary sigma model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {268--275},
publisher = {mathdoc},
volume = {214},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a6/}
}
TY - JOUR AU - V. V. Bekresheva TI - Structure of the~canonical uniton factorization of a~solution of a~noncommutative unitary sigma model JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 268 EP - 275 VL - 214 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a6/ LA - ru ID - TMF_2023_214_2_a6 ER -
%0 Journal Article %A V. V. Bekresheva %T Structure of the~canonical uniton factorization of a~solution of a~noncommutative unitary sigma model %J Teoretičeskaâ i matematičeskaâ fizika %D 2023 %P 268-275 %V 214 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a6/ %G ru %F TMF_2023_214_2_a6
V. V. Bekresheva. Structure of the~canonical uniton factorization of a~solution of a~noncommutative unitary sigma model. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 268-275. http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a6/