@article{TMF_2023_214_2_a5,
author = {O. V. Alekseev},
title = {Multi-point passage probabilities and {Green's} functions for {SLE}${}_{8/3}$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {243--267},
year = {2023},
volume = {214},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a5/}
}
O. V. Alekseev. Multi-point passage probabilities and Green's functions for SLE${}_{8/3}$. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 243-267. http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a5/
[1] O. Schramm, “Scaling limits of loop-erased random walks and uniform spanning trees”, Israel J. Math., 118:1 (2000), 221–288 | DOI | MR
[2] S. Rohde, O. Schramm, “Basic properties of SLE”, Ann. Math., 161:2 (2005), 883–924 | DOI | MR
[3] O. Schramm, “A percolation formula”, Electron. Commun. Probab., 6 (2001), 115–120 | DOI | MR
[4] J. J. H. Simmons, J. Cardy, “Twist operator correlation functions in $O(n)$ loop models”, J. Phys. A: Math. Theor., 42:23 (2009), 235001, 20 pp. | DOI | MR
[5] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, “Infinite conformal symmetry in two-dimensional quantum field theory”, Nucl. Phys. B, 241:2 (1984), 333–380 | DOI | MR
[6] B. Nienhuis, “Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas”, J. Statist. Phys., 34:5–6 (1984), 731–761 | DOI | MR
[7] Vl. S. Dotsenko, V. A. Fateev, “Conformal algebra and multipoint correlation functions in 2D statistical models”, Nucl. Phys. B, 240:3 (1984), 312–348 | DOI | MR
[8] Vl. S. Dotsenko, V. A. Fateev, “Four-point correlation functions and the operator algebra in 2D conformal invariant theories with central charge $C\leq1$”, Nucl. Phys. B, 251:5–6 (1985), 691–734 | DOI | MR
[9] J. Kondev, “Liouville field theory of fluctuating loops”, Phys. Rev. Lett., 78:23 (1997), 4320–4323 | DOI
[10] W. Kager, B. Nienhuis, “A guide to stochastic Löwner evolution and its applications”, J. Statist. Phys., 115:5–6 (2004), 1149–1229 | DOI | MR
[11] V. Gurarie, “Logarithmic operators and logarithmic conformal field theories”, J. Phys. A: Math. Theor., 46:49 (2013), 494003, 18 pp. | DOI | MR
[12] H. Eberle, M. Flohr, “Notes on generalised nullvectors in logarithmic CFT”, Nucl. Phys. B, 741:3 (2006), 441–466 | DOI | MR
[13] A. Gamsa, J. Cardy, “Correlation functions of twist operators applied to single self-avoiding loops”, J. Phys. A: Math. Gen., 39:41 (2006), 12983–13003 | DOI | MR
[14] J. Cardy, “Conformal invariance and surface critical behavior”, Nucl. Phys. B, 240:4 (1984), 514–532 | DOI
[15] M. A. Virasoro, “Subsidiary conditions and ghosts in dual-resonance models”, Phys. Rev. D, 1:10 (1970), 2933–2936 | DOI
[16] P. Mathieu, D. Ridout, “From percolation to logarithmic conformal field theory”, Phys. Lett. B, 657:1–3 (2007), 120–129 | DOI | MR
[17] P. Mathieu, D. Ridout, “Logarithmic $M(2,p)$ minimal models, their logarithmic couplings, and duality”, Nucl. Phys. B, 801:3 (2008), 268–295 | DOI | MR