Multi-point passage probabilities and Green's functions for SLE${}_{8/3}$
Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 243-267 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a loop representation of the $O(n)$ model at the critical point. In the case $n=0$, the model reduces to statistical ensembles of self-avoiding loops, which can be described by Schramm–Loewner evolution (SLE) with $\kappa=8/3$. In this limit, the $O(n=0)$ model corresponds to a logarithmic conformal field theory (LCFT) with the central charge $c=0$. We study the LCFT correlation functions in the upper half-plane containing several twist operators in the bulk and a pair of the $\Phi_{1,2}$ boundary operators. By using a Coulomb gas representation for the correlation functions, we obtain explicit results for the probabilities of the SLE${}_{8/3}$ trace to pass in various ways about $N\geq 1$ marked points. When the points approach each other pairwise, the probabilities reduce to multipoint SLE Green's functions. We propose an explicit representation for the Green's functions in terms of the correlation functions of the bulk $\Phi_{3,1}$ and boundary $\Phi_{1,2}$ operators.
Keywords: Schramm–Loewner evolution, conformal field theory.
@article{TMF_2023_214_2_a5,
     author = {O. V. Alekseev},
     title = {Multi-point passage probabilities and {Green's} functions for {SLE}${}_{8/3}$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {243--267},
     year = {2023},
     volume = {214},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a5/}
}
TY  - JOUR
AU  - O. V. Alekseev
TI  - Multi-point passage probabilities and Green's functions for SLE${}_{8/3}$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 243
EP  - 267
VL  - 214
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a5/
LA  - ru
ID  - TMF_2023_214_2_a5
ER  - 
%0 Journal Article
%A O. V. Alekseev
%T Multi-point passage probabilities and Green's functions for SLE${}_{8/3}$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 243-267
%V 214
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a5/
%G ru
%F TMF_2023_214_2_a5
O. V. Alekseev. Multi-point passage probabilities and Green's functions for SLE${}_{8/3}$. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 243-267. http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a5/

[1] O. Schramm, “Scaling limits of loop-erased random walks and uniform spanning trees”, Israel J. Math., 118:1 (2000), 221–288 | DOI | MR

[2] S. Rohde, O. Schramm, “Basic properties of SLE”, Ann. Math., 161:2 (2005), 883–924 | DOI | MR

[3] O. Schramm, “A percolation formula”, Electron. Commun. Probab., 6 (2001), 115–120 | DOI | MR

[4] J. J. H. Simmons, J. Cardy, “Twist operator correlation functions in $O(n)$ loop models”, J. Phys. A: Math. Theor., 42:23 (2009), 235001, 20 pp. | DOI | MR

[5] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, “Infinite conformal symmetry in two-dimensional quantum field theory”, Nucl. Phys. B, 241:2 (1984), 333–380 | DOI | MR

[6] B. Nienhuis, “Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas”, J. Statist. Phys., 34:5–6 (1984), 731–761 | DOI | MR

[7] Vl. S. Dotsenko, V. A. Fateev, “Conformal algebra and multipoint correlation functions in 2D statistical models”, Nucl. Phys. B, 240:3 (1984), 312–348 | DOI | MR

[8] Vl. S. Dotsenko, V. A. Fateev, “Four-point correlation functions and the operator algebra in 2D conformal invariant theories with central charge $C\leq1$”, Nucl. Phys. B, 251:5–6 (1985), 691–734 | DOI | MR

[9] J. Kondev, “Liouville field theory of fluctuating loops”, Phys. Rev. Lett., 78:23 (1997), 4320–4323 | DOI

[10] W. Kager, B. Nienhuis, “A guide to stochastic Löwner evolution and its applications”, J. Statist. Phys., 115:5–6 (2004), 1149–1229 | DOI | MR

[11] V. Gurarie, “Logarithmic operators and logarithmic conformal field theories”, J. Phys. A: Math. Theor., 46:49 (2013), 494003, 18 pp. | DOI | MR

[12] H. Eberle, M. Flohr, “Notes on generalised nullvectors in logarithmic CFT”, Nucl. Phys. B, 741:3 (2006), 441–466 | DOI | MR

[13] A. Gamsa, J. Cardy, “Correlation functions of twist operators applied to single self-avoiding loops”, J. Phys. A: Math. Gen., 39:41 (2006), 12983–13003 | DOI | MR

[14] J. Cardy, “Conformal invariance and surface critical behavior”, Nucl. Phys. B, 240:4 (1984), 514–532 | DOI

[15] M. A. Virasoro, “Subsidiary conditions and ghosts in dual-resonance models”, Phys. Rev. D, 1:10 (1970), 2933–2936 | DOI

[16] P. Mathieu, D. Ridout, “From percolation to logarithmic conformal field theory”, Phys. Lett. B, 657:1–3 (2007), 120–129 | DOI | MR

[17] P. Mathieu, D. Ridout, “Logarithmic $M(2,p)$ minimal models, their logarithmic couplings, and duality”, Nucl. Phys. B, 801:3 (2008), 268–295 | DOI | MR