On one interpolation inequality and its application to the~B\"urgers equatio
Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 239-242

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Cauchy problem for the nonlinear Bürgers equation and prove a new interpolation inequality. The method of energy inequalities involving the new interpolation inequality is used to study the solvability of the problem in question.
Keywords: nonlinear equation in hydrodynamics, Cauchy problem, nonlinear Bürgers equation, solvability, interpolation inequality.
@article{TMF_2023_214_2_a4,
     author = {Sh. M. Nasibov},
     title = {On one interpolation inequality and its application to {the~B\"urgers} equatio},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {239--242},
     publisher = {mathdoc},
     volume = {214},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a4/}
}
TY  - JOUR
AU  - Sh. M. Nasibov
TI  - On one interpolation inequality and its application to the~B\"urgers equatio
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 239
EP  - 242
VL  - 214
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a4/
LA  - ru
ID  - TMF_2023_214_2_a4
ER  - 
%0 Journal Article
%A Sh. M. Nasibov
%T On one interpolation inequality and its application to the~B\"urgers equatio
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 239-242
%V 214
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a4/
%G ru
%F TMF_2023_214_2_a4
Sh. M. Nasibov. On one interpolation inequality and its application to the~B\"urgers equatio. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 239-242. http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a4/