On one interpolation inequality and its application to the~B\"urgers equatio
Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 239-242
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the Cauchy problem for the nonlinear Bürgers equation and prove a new interpolation inequality. The method of energy inequalities involving the new interpolation inequality is used to study the solvability of the problem in question.
Keywords:
nonlinear equation in hydrodynamics, Cauchy problem, nonlinear Bürgers equation, solvability, interpolation inequality.
@article{TMF_2023_214_2_a4,
author = {Sh. M. Nasibov},
title = {On one interpolation inequality and its application to {the~B\"urgers} equatio},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {239--242},
publisher = {mathdoc},
volume = {214},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a4/}
}
TY - JOUR AU - Sh. M. Nasibov TI - On one interpolation inequality and its application to the~B\"urgers equatio JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 239 EP - 242 VL - 214 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a4/ LA - ru ID - TMF_2023_214_2_a4 ER -
Sh. M. Nasibov. On one interpolation inequality and its application to the~B\"urgers equatio. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 239-242. http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a4/