On one interpolation inequality and its application to the Bürgers equatio
Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 239-242 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Cauchy problem for the nonlinear Bürgers equation and prove a new interpolation inequality. The method of energy inequalities involving the new interpolation inequality is used to study the solvability of the problem in question.
Keywords: nonlinear equation in hydrodynamics, Cauchy problem, solvability, interpolation inequality.
Mots-clés : nonlinear Bürgers equation
@article{TMF_2023_214_2_a4,
     author = {Sh. M. Nasibov},
     title = {On one interpolation inequality and its application to {the~B\"urgers} equatio},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {239--242},
     year = {2023},
     volume = {214},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a4/}
}
TY  - JOUR
AU  - Sh. M. Nasibov
TI  - On one interpolation inequality and its application to the Bürgers equatio
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 239
EP  - 242
VL  - 214
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a4/
LA  - ru
ID  - TMF_2023_214_2_a4
ER  - 
%0 Journal Article
%A Sh. M. Nasibov
%T On one interpolation inequality and its application to the Bürgers equatio
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 239-242
%V 214
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a4/
%G ru
%F TMF_2023_214_2_a4
Sh. M. Nasibov. On one interpolation inequality and its application to the Bürgers equatio. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 239-242. http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a4/

[1] A. A. Kiselev, O. A. Ladyzhenskaya, “O suschestvovanii i edinstvennosti resheniya nestatsionarnoi zadachi dlya vyazkoi neszhimaemoi zhidkosti”, Izv. AN SSSR. Ser. matem., 21:5 (1957), 655–680 | MR | Zbl

[2] W. Xie, “A sharp pointwise bound for functions with $L^2$-Laplacians on arbitrary domains and its applications”, Bull. Amer. Math. Soc. (N. S.), 26:2 (1992), 294–298 | DOI | MR

[3] J. G. Heywood, “On the existence, regularity and decay of solutions”, Indiana Univ. Math. J., 29 (1980), 639–681 | DOI

[4] Sh. M. Nasibov, “O tochnoi konstante v odnom neravenstve Soboleva–Nirenberga i ee prilozhenii k uravneniyu Shredingera”, Izv. RAN. Ser. matem., 73:3 (2009), 127–150 | DOI | DOI | MR | Zbl

[5] Sh. M. Nasibov, “O kollapse reshenii zadachi Koshi dlya kubicheskogo evolyutsionnogo uravneniya Shredingera”, Matem. zametki, 105:1 (2019), 76–83 | DOI | DOI | MR

[6] Sh. M. Nasibov, “O skorosti razrusheniya reshenii zadachi Koshi dlya nelineinogo uravneniya Shredingera”, TMF, 203:3 (2020), 342–350 | DOI | DOI | MR