Mots-clés : Darboux transformation, soliton.
@article{TMF_2023_214_2_a3,
author = {H. Wajahat A. Riaz},
title = {Noncommutative generalization and {quasi-Gramian} solutions of {the~Hirota} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {224--238},
year = {2023},
volume = {214},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a3/}
}
H. Wajahat A. Riaz. Noncommutative generalization and quasi-Gramian solutions of the Hirota equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 224-238. http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a3/
[1] S. Carillo, C. Schiebold, “Noncommutative Korteweg–de Vries and modified Korteweg–de Vries hierarchies via recursion methods”, J. Math. Phys., 50:7 (2009), 073510, 14 pp. | DOI | MR | Zbl
[2] C. X. Li, J. J. C. Nimmo, S. Shen, “On integrability of a noncommutative $q$-difference two-dimensional Toda lattice equation”, Phys. Lett. A, 379:47–48 (2015), 3075–3083 | DOI | MR
[3] S. Carillo, M. L. Schiavo, E. Porten, C. Schiebold, “A novel noncommutative KdV-type equation, its recursion operator, and solitons”, J. Math. Phys., 59:4 (2018), 043501, 14 pp. | DOI | MR
[4] M. Khamanaka, Kh. Okabe, “Rasseyanie solitonov v nekommutativnykh prostranstvakh”, TMF, 197:1 (2018), 68–88 | DOI | DOI | MR
[5] H. W. A. Riaz, M. Hassan, “An integrable noncommutative generalization of the AB system and its multisoliton solutions”, Commun. Nonlinear Sci. Numer. Simul., 79:2 (2019), 104936, 14 pp. | DOI | MR
[6] S. R. Macfarlane, Quasideterminant solutions of noncommutative integrable systems, PhD thesis, University of Glasgow, Scotland, UK, 2010
[7] N. Seiberg, E. Witten, “String theory and noncommutative geometry”, JHEP, 09 (1999), 032, 93 pp. | DOI | MR
[8] K. Furuta, T. Inami, “Ultraviolet property of noncommutative Wess–Zumino–Witten model”, Mod. Phys. Lett. A, 15:15 (2000), 997–1002, arXiv: hep-th/0004024 | DOI | MR
[9] P. Etingof, I. Gelfand, V. Retakh, “Factorization of differential operators, quasideterminants and nonabelian Toda field equations”, Math. Res. Lett., 4:3 (1997), 413–425 | DOI | MR
[10] I. M. Gelfand, V. S. Retakh, “Determinanty matrits nad nekommutativnymi koltsami”, Funkts. analiz i ego pril., 25:2 (1991), 13–25 | DOI | MR | Zbl
[11] M. Hamanaka, “Noncommutative Ward's conjecture and integrable systems”, Nucl. Phys. B, 741:3 (2006), 368–389, arXiv: hep-th/0601209 | DOI | MR
[12] Fa-Jun Yu, “Noncommutative AKNS equation hierarchy and its integrable couplings with Kronecker product”, Chinese Phys. Lett., 25:2 (2008), 359–362 | DOI
[13] A. Dimakis, F. Müller-Hoissen, “Bicomplexes, integrable models, and noncommutative geometry”, Internat. J. Modern Phys. B, 14:22–23 (2000), 2455–2460 | DOI | MR
[14] O. Lechtenfeld, A. D. Popov, “Noncommutative multi-solitons in $2+1$ dimensions”, JHEP, 11 (2001), 040, 32 pp. | DOI | MR
[15] O. Lechtenfeld, L. Mazzanti, S. Penati, A. D. Popov, L. Tamassia, “Integrable noncommutative sine-Gordon model”, Nucl. Phys. B, 705:3 (2005), 477–503 | DOI
[16] C. R. Gilson, J. J. C. Nimmo, “On a direct approach to quasideterminant solutions of a noncommutative KP equation”, J. Phys. A: Math. Theor., 40:14 (2007), 3839–3850, arXiv: nlin/0701027 | DOI | MR
[17] C. R. Gilson, S. R. Macfarlane, “Dromion solutions of noncommutative Davey–Stewartson equations”, J. Phys. A: Math. Theor., 42:23 (2009), 235202, 20 pp. | DOI | MR
[18] H. W. A. Riaz, M. Hassan, “Multi-component noncommutative coupled dispersionless system and its quasideterminant solutions”, Modern Phys. Lett. A, 33:15 (2018), 1850086, 15 pp. | DOI | MR
[19] H. W. A. Riaz, M. Hassan, “Multisoliton solutions of integrable discrete and semi-discrete principal chiral equations”, Commun. Nonlinear Sci. Numer. Simul., 54 (2018), 416–427 | DOI | MR
[20] H. W. A. Riaz, “Noncommutative coupled complex modified Korteweg–de Vries equation: Darboux and binary Darboux transformations”, Modern Phys. Lett. A, 34:7–8 (2019), 1950054, 15 pp. | DOI | MR
[21] I. Gelfand, S. Gelfand, V. Retakh, R. L. Wilson, “Quasideterminants”, Adv. Math., 193:1 (2005), 56–141 | DOI | MR
[22] R. Hirota, “Exact envelope-soliton solutions of a nonlinear wave equation”, J. Math. Phys., 14:7 (1973), 805–809 | DOI | MR
[23] V. S. Gerdjikov, G. G. Grahovski, “On the multi-component NLS type systems and their gauge equivalent: Examples and reductions”, AIP Conf. Proc., 729:1 (2004), 162–169 | DOI | MR | Zbl
[24] T. Xu, G. He, “Higher-order interactional solutions and rogue wave pairs for the coupled Lakshmanan–Porsezian–Daniel equations”, Nonlinear Dyn., 98:3 (2019), 1731–1744 | DOI
[25] A. Silem, C. Zhang, D.-J. Zhang, “Dynamics of three nonisospectral nonlinear Schrödinger equations”, Chinese Phys. B, 28:2 (2019), 020202 | DOI
[26] Y. Zhang, R. Ye, W. Ma, “Binary Darboux transformation and soliton solutions for the coupled complex modified Korteweg–de Vries equations”, Math. Methods Appl. Sci., 43:2 (2020), 613–627 | DOI | MR
[27] A. Ankiewicz, J. M. Soto-Crespo, N. Akhmediev, “Rogue waves and rational solutions of the Hirota equation”, Phys. Rev. E, 81:4 (2010), 046602, 8 pp. | DOI | MR
[28] A. Ankiewicz, M. Bokaeeyan, N. Akhmediev, “Shallow-water rogue waves: An approach based on complex solutions of the Korteweg–de Vries equation”, Phys. Rev. E, 99:5 (2019), 050201, 5 pp. | DOI
[29] H.-Q. Zhang, F. Chen, “Dark and antidark solitons for the defocusing coupled Sasa–Satsuma system by the Darboux transformation”, Appl. Math. Lett., 88 (2018), 237–242 | MR
[30] D. K. Nimmo, K. R. Dzhilson, Ya. Okhta, “Primeneniya preobrazovanii Darbu k samodualnym uravneniyam Yanga–Millsa”, TMF, 122:2 (2000), 284–293 | DOI | DOI | MR | Zbl
[31] V. M. Goncharenko, “O mnogosolitonnykh resheniyakh matrichnogo uravneniya KdF”, TMF, 126:1 (2001), 102–114 | DOI | DOI | MR | Zbl