Noncommutative generalization and quasi-Gramian solutions of the Hirota equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 224-238 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The nonlinear Schrödinger (NLS) and modified Korteweg–de Vries (mKdV) equations can be combined to form an integrable equation known as the Hirota equation. In this paper, we investigate a noncommutative generalization of the Hirota equation by establishing the zero-curvature condition, identifying the Lax pair, and using the covariance strategy to find the binary Darboux transformation (DT) and the Darboux transformation (DT) for the noncommutative Hirota equation. We also construct the quasi-Gramian solutions. First-order single- and double-peaked solutions in noncommutative contexts are also presented.
Keywords: noncommutative integrable system, binary Darboux transformation
Mots-clés : Darboux transformation, soliton.
@article{TMF_2023_214_2_a3,
     author = {H. Wajahat A. Riaz},
     title = {Noncommutative generalization and {quasi-Gramian} solutions of {the~Hirota} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {224--238},
     year = {2023},
     volume = {214},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a3/}
}
TY  - JOUR
AU  - H. Wajahat A. Riaz
TI  - Noncommutative generalization and quasi-Gramian solutions of the Hirota equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 224
EP  - 238
VL  - 214
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a3/
LA  - ru
ID  - TMF_2023_214_2_a3
ER  - 
%0 Journal Article
%A H. Wajahat A. Riaz
%T Noncommutative generalization and quasi-Gramian solutions of the Hirota equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 224-238
%V 214
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a3/
%G ru
%F TMF_2023_214_2_a3
H. Wajahat A. Riaz. Noncommutative generalization and quasi-Gramian solutions of the Hirota equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 224-238. http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a3/

[1] S. Carillo, C. Schiebold, “Noncommutative Korteweg–de Vries and modified Korteweg–de Vries hierarchies via recursion methods”, J. Math. Phys., 50:7 (2009), 073510, 14 pp. | DOI | MR | Zbl

[2] C. X. Li, J. J. C. Nimmo, S. Shen, “On integrability of a noncommutative $q$-difference two-dimensional Toda lattice equation”, Phys. Lett. A, 379:47–48 (2015), 3075–3083 | DOI | MR

[3] S. Carillo, M. L. Schiavo, E. Porten, C. Schiebold, “A novel noncommutative KdV-type equation, its recursion operator, and solitons”, J. Math. Phys., 59:4 (2018), 043501, 14 pp. | DOI | MR

[4] M. Khamanaka, Kh. Okabe, “Rasseyanie solitonov v nekommutativnykh prostranstvakh”, TMF, 197:1 (2018), 68–88 | DOI | DOI | MR

[5] H. W. A. Riaz, M. Hassan, “An integrable noncommutative generalization of the AB system and its multisoliton solutions”, Commun. Nonlinear Sci. Numer. Simul., 79:2 (2019), 104936, 14 pp. | DOI | MR

[6] S. R. Macfarlane, Quasideterminant solutions of noncommutative integrable systems, PhD thesis, University of Glasgow, Scotland, UK, 2010

[7] N. Seiberg, E. Witten, “String theory and noncommutative geometry”, JHEP, 09 (1999), 032, 93 pp. | DOI | MR

[8] K. Furuta, T. Inami, “Ultraviolet property of noncommutative Wess–Zumino–Witten model”, Mod. Phys. Lett. A, 15:15 (2000), 997–1002, arXiv: hep-th/0004024 | DOI | MR

[9] P. Etingof, I. Gelfand, V. Retakh, “Factorization of differential operators, quasideterminants and nonabelian Toda field equations”, Math. Res. Lett., 4:3 (1997), 413–425 | DOI | MR

[10] I. M. Gelfand, V. S. Retakh, “Determinanty matrits nad nekommutativnymi koltsami”, Funkts. analiz i ego pril., 25:2 (1991), 13–25 | DOI | MR | Zbl

[11] M. Hamanaka, “Noncommutative Ward's conjecture and integrable systems”, Nucl. Phys. B, 741:3 (2006), 368–389, arXiv: hep-th/0601209 | DOI | MR

[12] Fa-Jun Yu, “Noncommutative AKNS equation hierarchy and its integrable couplings with Kronecker product”, Chinese Phys. Lett., 25:2 (2008), 359–362 | DOI

[13] A. Dimakis, F. Müller-Hoissen, “Bicomplexes, integrable models, and noncommutative geometry”, Internat. J. Modern Phys. B, 14:22–23 (2000), 2455–2460 | DOI | MR

[14] O. Lechtenfeld, A. D. Popov, “Noncommutative multi-solitons in $2+1$ dimensions”, JHEP, 11 (2001), 040, 32 pp. | DOI | MR

[15] O. Lechtenfeld, L. Mazzanti, S. Penati, A. D. Popov, L. Tamassia, “Integrable noncommutative sine-Gordon model”, Nucl. Phys. B, 705:3 (2005), 477–503 | DOI

[16] C. R. Gilson, J. J. C. Nimmo, “On a direct approach to quasideterminant solutions of a noncommutative KP equation”, J. Phys. A: Math. Theor., 40:14 (2007), 3839–3850, arXiv: nlin/0701027 | DOI | MR

[17] C. R. Gilson, S. R. Macfarlane, “Dromion solutions of noncommutative Davey–Stewartson equations”, J. Phys. A: Math. Theor., 42:23 (2009), 235202, 20 pp. | DOI | MR

[18] H. W. A. Riaz, M. Hassan, “Multi-component noncommutative coupled dispersionless system and its quasideterminant solutions”, Modern Phys. Lett. A, 33:15 (2018), 1850086, 15 pp. | DOI | MR

[19] H. W. A. Riaz, M. Hassan, “Multisoliton solutions of integrable discrete and semi-discrete principal chiral equations”, Commun. Nonlinear Sci. Numer. Simul., 54 (2018), 416–427 | DOI | MR

[20] H. W. A. Riaz, “Noncommutative coupled complex modified Korteweg–de Vries equation: Darboux and binary Darboux transformations”, Modern Phys. Lett. A, 34:7–8 (2019), 1950054, 15 pp. | DOI | MR

[21] I. Gelfand, S. Gelfand, V. Retakh, R. L. Wilson, “Quasideterminants”, Adv. Math., 193:1 (2005), 56–141 | DOI | MR

[22] R. Hirota, “Exact envelope-soliton solutions of a nonlinear wave equation”, J. Math. Phys., 14:7 (1973), 805–809 | DOI | MR

[23] V. S. Gerdjikov, G. G. Grahovski, “On the multi-component NLS type systems and their gauge equivalent: Examples and reductions”, AIP Conf. Proc., 729:1 (2004), 162–169 | DOI | MR | Zbl

[24] T. Xu, G. He, “Higher-order interactional solutions and rogue wave pairs for the coupled Lakshmanan–Porsezian–Daniel equations”, Nonlinear Dyn., 98:3 (2019), 1731–1744 | DOI

[25] A. Silem, C. Zhang, D.-J. Zhang, “Dynamics of three nonisospectral nonlinear Schrödinger equations”, Chinese Phys. B, 28:2 (2019), 020202 | DOI

[26] Y. Zhang, R. Ye, W. Ma, “Binary Darboux transformation and soliton solutions for the coupled complex modified Korteweg–de Vries equations”, Math. Methods Appl. Sci., 43:2 (2020), 613–627 | DOI | MR

[27] A. Ankiewicz, J. M. Soto-Crespo, N. Akhmediev, “Rogue waves and rational solutions of the Hirota equation”, Phys. Rev. E, 81:4 (2010), 046602, 8 pp. | DOI | MR

[28] A. Ankiewicz, M. Bokaeeyan, N. Akhmediev, “Shallow-water rogue waves: An approach based on complex solutions of the Korteweg–de Vries equation”, Phys. Rev. E, 99:5 (2019), 050201, 5 pp. | DOI

[29] H.-Q. Zhang, F. Chen, “Dark and antidark solitons for the defocusing coupled Sasa–Satsuma system by the Darboux transformation”, Appl. Math. Lett., 88 (2018), 237–242 | MR

[30] D. K. Nimmo, K. R. Dzhilson, Ya. Okhta, “Primeneniya preobrazovanii Darbu k samodualnym uravneniyam Yanga–Millsa”, TMF, 122:2 (2000), 284–293 | DOI | DOI | MR | Zbl

[31] V. M. Goncharenko, “O mnogosolitonnykh resheniyakh matrichnogo uravneniya KdF”, TMF, 126:1 (2001), 102–114 | DOI | DOI | MR | Zbl