Two-component complex modified Korteweg-de Vries equations: new soliton solutions from novel binary Darboux transformation
Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 211-223

Voir la notice de l'article provenant de la source Math-Net.Ru

We derive a $2^N\times 2^N$ Lax pair in the form of block matrices for the $N$-component complex modified Korteweg–de Vries (mKdV) equations and construct a novel binary Darboux transformation with $N=2$. Based on Lax pairs and adjoint Lax pairs, we present a new type of Darboux matrices in which eigenvalues could be equal to adjoint eigenvalues. As an illustration, by taking the zero seed solutions, we construct new soliton solutions using the binary Darboux transformation for $2$-component complex mKdV equations with a Lax pair of $4\times 4$ matrix spectral problems. New two- and three-soliton solutions are provided explicitly by choosing appropriate parameters. Furthermore, dynamics and interactions of two- and three-soliton solutions are also explored graphically.
Keywords: two-component complex modified Korteweg–de Vries equations, matrix spectral problem, binary Darboux transformation
Mots-clés : soliton solution, Lax pair.
@article{TMF_2023_214_2_a2,
     author = {Rusuo Ye and Yi Zhang},
     title = {Two-component complex modified {Korteweg-de} {Vries} equations: new soliton solutions from novel binary {Darboux} transformation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {211--223},
     publisher = {mathdoc},
     volume = {214},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a2/}
}
TY  - JOUR
AU  - Rusuo Ye
AU  - Yi Zhang
TI  - Two-component complex modified Korteweg-de Vries equations: new soliton solutions from novel binary Darboux transformation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 211
EP  - 223
VL  - 214
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a2/
LA  - ru
ID  - TMF_2023_214_2_a2
ER  - 
%0 Journal Article
%A Rusuo Ye
%A Yi Zhang
%T Two-component complex modified Korteweg-de Vries equations: new soliton solutions from novel binary Darboux transformation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 211-223
%V 214
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a2/
%G ru
%F TMF_2023_214_2_a2
Rusuo Ye; Yi Zhang. Two-component complex modified Korteweg-de Vries equations: new soliton solutions from novel binary Darboux transformation. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 211-223. http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a2/