Two-component complex modified Korteweg-de Vries equations: new soliton solutions from novel binary Darboux transformation
Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 211-223 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive a $2^N\times 2^N$ Lax pair in the form of block matrices for the $N$-component complex modified Korteweg–de Vries (mKdV) equations and construct a novel binary Darboux transformation with $N=2$. Based on Lax pairs and adjoint Lax pairs, we present a new type of Darboux matrices in which eigenvalues could be equal to adjoint eigenvalues. As an illustration, by taking the zero seed solutions, we construct new soliton solutions using the binary Darboux transformation for $2$-component complex mKdV equations with a Lax pair of $4\times 4$ matrix spectral problems. New two- and three-soliton solutions are provided explicitly by choosing appropriate parameters. Furthermore, dynamics and interactions of two- and three-soliton solutions are also explored graphically.
Keywords: two-component complex modified Korteweg–de Vries equations, matrix spectral problem, binary Darboux transformation
Mots-clés : soliton solution, Lax pair.
@article{TMF_2023_214_2_a2,
     author = {Rusuo Ye and Yi Zhang},
     title = {Two-component complex modified {Korteweg-de} {Vries} equations: new soliton solutions from novel binary {Darboux} transformation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {211--223},
     year = {2023},
     volume = {214},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a2/}
}
TY  - JOUR
AU  - Rusuo Ye
AU  - Yi Zhang
TI  - Two-component complex modified Korteweg-de Vries equations: new soliton solutions from novel binary Darboux transformation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 211
EP  - 223
VL  - 214
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a2/
LA  - ru
ID  - TMF_2023_214_2_a2
ER  - 
%0 Journal Article
%A Rusuo Ye
%A Yi Zhang
%T Two-component complex modified Korteweg-de Vries equations: new soliton solutions from novel binary Darboux transformation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 211-223
%V 214
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a2/
%G ru
%F TMF_2023_214_2_a2
Rusuo Ye; Yi Zhang. Two-component complex modified Korteweg-de Vries equations: new soliton solutions from novel binary Darboux transformation. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 211-223. http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a2/

[1] E. A. Ralph, L. Pratt, “Predicting eddy detachment for an equivalent barotropic thin jet”, J. Nonlinear Sci., 4:1 (1994), 355–374 | DOI

[2] H. X. Ge, S. Q. Dai, Y. Xue, L. Y. Dong, “Stabilization analysis and modified Korteweg–de Vries equation in a cooperative driving system”, Phys. Rev. E, 71:6 (2005), 066119, 7 pp. | DOI | MR

[3] M. A. Helal, “Soliton solution of some nonlinear partial differential equations and its applications in fluid mechanics”, Chaos Solitons Fractals, 13:9 (2002), 1917–1929 | MR

[4] H. Ono, “Soliton fission in anharmonic lattices with reflectionless inhomogeneity”, J. Phys. Soc. Japan, 61:12 (1992), 4336–4343 | DOI

[5] A. Boutet de Monvel, A. S. Fokas, D. Shepelsky, “The mKdV equation on the half-line”, J. Inst. Math. Jussieu, 3:2 (2004), 139–164 | DOI | MR

[6] A. Boutet de Monvel, D. G. Shepelsky, “Initial boundary value problem for the mKdV equation on a finite interval”, Ann. Inst. Fourier, 54:5 (2004), 1477–1495 | DOI | MR

[7] D.-J. Zhang, S.-L. Zhao, Y.-Y. Sun, J. Zhou, “Solutions to the modified Korteweg–de Vries equation”, Rev. Math. Phys., 26:7 (2014), 1430006 | DOI | MR

[8] M. Wadati, “The modified Korteweg–de Vries equation”, J. Phys. Soc. Japan, 34:5 (1973), 1289–1296 | DOI | MR | Zbl

[9] H.-Q. Zhang, B. Tian, T. Xu, H. Li, C. Zhang, H. Zhang, “Lax pair and Darboux transformation for multi-component modified Korteweg–de Vries equations”, J. Phys. A: Math. Theor., 41:35 (2008), 355210, 13 pp. | DOI | MR

[10] X.-W. Yan, “A two-component modified Korteweg–de Vries equation: Riemann–Hilbert problem and multi-soliton solutions”, Int. J. Comput. Math., 98:3 (2021), 569–579 | DOI | MR

[11] B.-B. Hu, T.-C. Xia, W.-X. Ma, “Riemann–Hilbert approach for an initial-boundary value problem of the two-component modified Korteweg–de Vries equation on the half-line”, Appl. Math. Comput., 332 (2018), 148–159 | DOI | MR

[12] G. Zhang, L. Ling, Z. Yan, “Multi-component nonlinear Schrödinger equations with nonzero boundary conditions: higher-order vector Peregrine solitons and asymptotic estimates”, J. Nonlinear Sci., 31:5 (2021), 81, 52 pp. | DOI | MR

[13] M. S. Alber, G. G. Luther, C. A. Miller, “On soliton-type solutions of equations associated with $N$-component systems”, J. Math. Phys., 41:1 (2000), 284–316 | DOI | MR

[14] Y. Matsuno, “The bright $N$-soliton solution of a multi-component modified nonlinear Schrödinger equation”, J. Phys. A: Math. Theor., 44:49 (2011), 495202, 18 pp. | DOI | MR

[15] Y. Zhang, R. Ye, W.-X. Ma, “Binary Darboux transformation and soliton solutions for the coupled complex modified Korteweg–de Vries equations”, Math. Methods Appl. Sci., 43:2 (2020), 613–627 | DOI | MR

[16] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | DOI | MR | MR | Zbl | Zbl

[17] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin, 1991 | DOI | MR | Zbl

[18] R. Hirota, The direct method in solution theory, Cambridge Tracts in Mathematics, 155, Cambridge Univ. Press, Cambridge, 2004 | MR

[19] E. V. Doktorov, S. B. Leble, A Dressing Method in Mathematical Physics, Mathematical Physics Studies, 28, Springer, Dordrecht, 2007 | MR

[20] A. Dimakis, F. Müller-Hoissen, “Solutions of matrix NLS systems and their discretizations: a unified treatment”, Inverse Problems, 26:9 (2010), 095007, 55 pp. | DOI | MR

[21] A. Dimakis, F. Müller-Hoissen, Differential calculi on associative algebras and integrable systems, arXiv: 1801.00589

[22] J. J. C. Nimmo, H. Yilmaz, “Binary Darboux transformation for the Sasa–Satsuma equation”, J. Phys. A: Math. Theor., 48:42 (2015), 425202, 16 pp. | DOI | MR

[23] O. Chvartatskyi, A. Dimakis, F. Müller-Hoissen, “Self-consistent sources for integrable equations via deformations of binary Darboux transformations”, Lett. Math. Phys., 106:8 (2016), 1139–1179 | DOI | MR

[24] W.-X. Ma, “Binary Darboux transformation for general matrix mKdV equations and reduced counterparts”, Chaos Solitons Fractals, 146 (2021), 110824, 6 pp. | DOI | MR

[25] W.-X. Ma, S. Batwa, “A binary Darboux transformation for multicomponent NLS equations and their reductions”, Anal. Math. Phys., 11:2 (2021), 44, 12 pp. | DOI | MR

[26] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | Zbl

[27] T. Kawata, “Riemann spectral method for the nonlinear evolution equation”, Advances in Nonlinear Waves, v. 1, Research Notes in Mathematics, ed. L. Debnath, Pitman, Boston, 1984, 210–225 | MR

[28] T. Tsuchida, M. Wadati, “The coupled modified Korteweg–de Vries equations”, J. Phys. Soc. Japan, 67:4 (1998), 1175–1187, arXiv: solv-int/9812003 | DOI

[29] S. Carillo, C. Schiebold, “Matrix Korteweg–de Vries and modified Korteweg–de Vries hierarchies: Noncommutative soliton solutions”, J. Math. Phys., 52:5 (2011), 053507, 21 pp. | DOI | MR

[30] S. Carillo, M. L. Schiavo, C. Schiebold, “Matrix solitons solutions of the modified Korteweg–de Vries equation”, Nonlinear Dynamics of Structures, Systems and Devices, Proceedings of the First International Nonlinear Dynamics Conference (NODYCON 2019), v. I, eds. W. Lacarbonara, B. Balachandran, J. Ma, J. A. Tenreiro Machado, G. Stepan, Springer, Cham, 2020, 75–83 | DOI | MR

[31] X. Chen, Y. Zhang, J. Liang, R. Wang, “The $N$-soliton solutions for the matrix modified Korteweg–de Vries equation via the Riemann–Hilbert approach”, Eur. Phys. J. Plus, 135 (2020), 574, 9 pp. | DOI

[32] J.-J. Yang, S.-F. Tian, Z.-Q. Li, Inverse scattering transform and soliton solutions for the modified matrix Korteweg–de Vries equation with nonzero boundary conditions, arXiv: 2005.00290

[33] W.-X. Ma, Y. Huang, F. Wang, “Inverse scattering transforms and soliton solutions of nonlocal reverse-space nonlinear Schrödinger hierarchies”, Stud. Appl. Math., 145:3 (2020), 563–585 | DOI | MR

[34] W.-X. Ma, “Inverse scattering and soliton solutions of nonlocal reverse-spacetime nonlinear Schrödinger equations”, Proc. Amer. Math. Soc., 149:1 (2021), 251–263 | DOI | MR