Fixed points of an infinite-dimensional operator related to Gibbs measures
Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 329-344

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe fixed points of an infinite-dimensional nonlinear operator related to a hard-core (HC) model with a countable set $\mathbb N$ of spin values on a Cayley tree. This operator is defined by a countable set of parameters $\lambda_i>0$, $a_{ij}\in\{0,1\}$, $i,j\in\mathbb N$. We find a sufficient condition on these parameters under which the operator has a unique fixed point. When this condition is not satisfied, we show that the operator may have up to five fixed points. We also prove that every fixed point generates a normalizable boundary law and therefore defines a Gibbs measure for the given HC model.
Keywords: fixed point, Cayley tree, Gibbs measure, HC model.
@article{TMF_2023_214_2_a11,
     author = {U. R. Olimov and U. A. Rozikov},
     title = {Fixed points of an infinite-dimensional operator related to {Gibbs} measures},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {329--344},
     publisher = {mathdoc},
     volume = {214},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a11/}
}
TY  - JOUR
AU  - U. R. Olimov
AU  - U. A. Rozikov
TI  - Fixed points of an infinite-dimensional operator related to Gibbs measures
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 329
EP  - 344
VL  - 214
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a11/
LA  - ru
ID  - TMF_2023_214_2_a11
ER  - 
%0 Journal Article
%A U. R. Olimov
%A U. A. Rozikov
%T Fixed points of an infinite-dimensional operator related to Gibbs measures
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 329-344
%V 214
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a11/
%G ru
%F TMF_2023_214_2_a11
U. R. Olimov; U. A. Rozikov. Fixed points of an infinite-dimensional operator related to Gibbs measures. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 329-344. http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a11/