Gibbs measures for the Potts model with a countable set of spin values on a Cayley tree
Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 318-328
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an infinite system of functional equations for the Potts model with competing interactions of radius $r=2$ and countable spin values $\Phi=\{0,1,\ldots,\}$ on the Cayley tree of order $k=2$. We reduce the problem to the description of the solutions of some infinite system of equations for any $k=2$ and any fixed probability measure $\nu$ with $\nu(i)>0$ on the set of all nonnegative integer numbers. We also give a description of the class of measures $\nu$ on $\Phi$ such that the infinite system of equations has unique solution $\{a^i,\,i=1,2,\ldots\}$, $a\in(0,1)$, with respect to each element of this class.
Keywords: Cayley tree, Potts model, Gibbs measure, functional equation.
@article{TMF_2023_214_2_a10,
     author = {G. I. Botirov and Z. E. Mustafoeva},
     title = {Gibbs measures for {the~Potts} model with a~countable set of spin values on {a~Cayley} tree},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {318--328},
     year = {2023},
     volume = {214},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a10/}
}
TY  - JOUR
AU  - G. I. Botirov
AU  - Z. E. Mustafoeva
TI  - Gibbs measures for the Potts model with a countable set of spin values on a Cayley tree
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 318
EP  - 328
VL  - 214
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a10/
LA  - ru
ID  - TMF_2023_214_2_a10
ER  - 
%0 Journal Article
%A G. I. Botirov
%A Z. E. Mustafoeva
%T Gibbs measures for the Potts model with a countable set of spin values on a Cayley tree
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 318-328
%V 214
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a10/
%G ru
%F TMF_2023_214_2_a10
G. I. Botirov; Z. E. Mustafoeva. Gibbs measures for the Potts model with a countable set of spin values on a Cayley tree. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 318-328. http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a10/

[1] F. Y. Wu, “The Potts model”, Rev. Modern Phys., 54:1 (1982), 235–268 | DOI | MR

[2] N. N. Ganikhodzhaev, “O chistykh fazakh ferromagnitnoi modeli Pottsa s tremya sostoyaniyami na reshetke Bete vtorogo poryadka”, TMF, 85:2 (1990), 163–175 | DOI | MR

[3] N. N. Ganikhodzhaev, “O chistykh fazakh ferromagnitnoi modeli Pottsa na reshetke Bete”, Dokl. AN RUz, 6:7 (1992), 4–7

[4] P. M. Blekher, N. N. Ganikhodzhaev, “O chistykh fazakh modeli Izinga na reshetkakh Bete”, Teoriya veroyatn. i ee primen., 35:2 (1990), 220–230 | DOI | MR | Zbl

[5] P. M. Bleher, J. Ruiz, V. A. Zagrebnov, “On the purity of the limiting Gibbs states for the Ising model on the Bethe lattice”, J. Stat. Phys., 79:1–2 (1995), 473–482 | DOI

[6] G. I. Botirov, U. A. Rozikov, “Model Pottsa s konkuriruyuschimi vzaimodeistviyami na dereve Keli: konturnyi metod”, TMF, 153:1 (2007), 86–97 | DOI | DOI | MR | Zbl

[7] N. N. Ganikhodjaev, “The Potts model on $\mathbb{Z}^d$ with countable set of spin values”, J. Math. Phys., 45:3 (2004), 1121–1127 | DOI | MR

[8] N. N. Ganikhodjaev, U. A. Rozikov, “The Potts model with countable set of spin values on a Cayley tree”, Lett. Math. Phys., 75:2 (2006), 99–109 | DOI | MR

[9] C. Külske, U. A. Rozikov, R. M. Khakimov, “Description of translation-invariant splitting Gibbs measures for the Potts model on a Cayley tree”, J. Stat. Phys., 156:1 (2014), 189–200, arXiv: 1310.622 | DOI | MR

[10] R. M. Khakimov, M. T. Makhammadaliev, “Translyatsionnaya invariantnost periodicheskikh mer Gibbsa dlya modeli Pottsa na dereve Keli”, TMF, 199:2 (2019), 291–301 | DOI | DOI | MR

[11] G. I. Botirov, U. U. Kayumov, “Osnovnye sostoyaniya modeli Pottsa s konkuriruyuschimi vzaimodeistviyami i schetnym mnozhestvom znachenii spina na dereve Keli”, TMF, 209:2 (2021), 367–377 | DOI | DOI | MR

[12] N. Ganikhodjaev, F. Mukhamedov, C. H. Pah, “Phase diagram of the three states Potts model with next nearest neighbour interactions on the Bethe lattice”, Phys. Lett. A, 373:1 (2008), 33–38, arXiv: 0803.2558 | DOI | MR