Integrating the modified Korteweg–de Vries–sine-Gordon equation in the class of periodic infinite-gap functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 198-210 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The inverse spectral problem method is used to integrate the nonlinear modified Korteweg–de Vries–sine-Gordon equation in the class of periodic infinite-gap functions. The solvability of the Cauchy problem for an infinite system of Dubrovin differential equations in the class of six-times continuously differentiable periodic infinite-gap functions is proved. It is shown that the sum of a uniformly converging functional series constructed with the use of a solution of a system of Dubrovin equations and the first trace formula satisfies the modified Korteweg–de Vries–sine-Gordon equation.
Keywords: modified Korteweg–de Vries–sine-Gordon equation, Dirac operator, spectral data, system of Dubrovin equations, trace formulas.
@article{TMF_2023_214_2_a1,
     author = {A. B. Khasanov and Kh. N. Normurodov and U. O. Hudayerov},
     title = {Integrating the~modified {Korteweg{\textendash}de~Vries{\textendash}sine-Gordon} equation in the~class of periodic infinite-gap functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {198--210},
     year = {2023},
     volume = {214},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a1/}
}
TY  - JOUR
AU  - A. B. Khasanov
AU  - Kh. N. Normurodov
AU  - U. O. Hudayerov
TI  - Integrating the modified Korteweg–de Vries–sine-Gordon equation in the class of periodic infinite-gap functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 198
EP  - 210
VL  - 214
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a1/
LA  - ru
ID  - TMF_2023_214_2_a1
ER  - 
%0 Journal Article
%A A. B. Khasanov
%A Kh. N. Normurodov
%A U. O. Hudayerov
%T Integrating the modified Korteweg–de Vries–sine-Gordon equation in the class of periodic infinite-gap functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 198-210
%V 214
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a1/
%G ru
%F TMF_2023_214_2_a1
A. B. Khasanov; Kh. N. Normurodov; U. O. Hudayerov. Integrating the modified Korteweg–de Vries–sine-Gordon equation in the class of periodic infinite-gap functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 198-210. http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a1/

[1] A.-M. Wazwaz, “$N$-soliton solutions for the integrable modified KdV-sine-Gordon equation”, Phys. Scr., 89:6 (2014), 065805, 5 pp. | DOI

[2] M. Wadati, “The exact solution of the modified Korteweg–de Vries equation”, J. Phys. Soc. Japan, 32:6 (1972), 1681–1681 | DOI

[3] A. V. Zhiber, R. D. Murtozina, I. T. Khabibullin, A. B. Shabat, “Kharakteristicheskie koltsa Li i integriruemye modeli matematicheskoi fiziki”, Ufimsk. matem. zhurn., 4:3 (2012), 17–85 | MR

[4] V. E. Zakharov, L. A. Takhtadzhyan, L. D. Faddeev, “Polnoe opisanie reshenii ‘sin-Gordon’ uravneniya”, Dokl. AN SSSR, 219:6 (1974), 1334–1337 | MR | Zbl

[5] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Sugur, “Method for solving the sine-Gordon equation”, Phys. Rev. Lett., 30:25 (1973), 1262–1264 | DOI | MR

[6] V. A. Kozel, V. P. Kotlyarov, Konechnozonnye resheniya uravneniya sine-Gordon, Preprint FTINT AN USSR No 9-77, Kharkov, 1977

[7] V. A. Kozel, V. P. Kotlyarov, “Pochti periodicheskie resheniya uravneniya $u_{tt}-u_{xx}=\sin u$”, Dokl. AN USSR, ser. A, 1976, no. 10, 878–881 | MR | Zbl

[8] B. A. Dubrovin, S. M. Natanzon, “Veschestvennye dvukhzonnye resheniya uravneniya sine-Gordon”, Funkts. analiz i ego pril., 16:1 (1982), 27–43 | DOI | MR | Zbl

[9] A. O. Smirnov, “3-ellipticheskie resheniya uravneniya “sine-Gordon””, Matem. zametki, 62:3 (1997), 440–450 | DOI | DOI | MR | Zbl

[10] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR

[11] Yu. A. Mitropolskii, N. N. Bogolyubov (ml.), A. K. Prikarpatskii, V. G. Samoilenko, Integriruemye dinamicheskie sistemy: spektralnye i differentsialno-geometricheskie aspekty, Naukova dumka, Kiev, 1987 | MR

[12] V. B. Matveev, “30 years of finite-gap integration theory”, Philos. Trans. Roy. Soc. London Ser. A, 366:1867 (2008), 837–875 | DOI | MR

[13] E. L. Ince, Ordinary Differential Equations, Dover, New York, 1956 | MR

[14] P. B. Dzhakov, B. S. Mityagin, “Zony neustoichivosti odnomernykh periodicheskikh operatorov Shredingera i Diraka”, UMN, 61(370):4 (2006), 77–182 | DOI | DOI | MR | Zbl

[15] A. B. Khasanov, M. M. Khasanov, “Integrirovanie nelineinogo uravneniya Shredingera s dopolnitelnym chlenom v klasse periodicheskikh funktsii”, TMF, 199:1 (2019), 60–68 | DOI | DOI | MR

[16] A. B. Khasanov, M. M. Matyakubov, “Integrirovanie nelineinogo uravneniya Kortevega–de Friza s dopolnitelnym chlenom”, TMF, 203:2 (2020), 192–204 | DOI | DOI | MR

[17] A. B. Khasanov, T. G. Khasanov, “Zadacha Koshi dlya uravneniya Kortevega–de Friza v klasse periodicheskikh beskonechnozonnykh funktsii”, Matematicheskie voprosy teorii rasprostraneniya voln. 51, Zap. nauchn. sem. POMI, 506, POMI, SPb., 2021, 258–279

[18] A. B. Khasanov, T. Zh. Allanazarova, “On the modified Korteweg–De-Vries equation with loaded term”, Ukr. Math. J., 73:11 (2022), 1783–1809 | DOI | MR

[19] A. V. Domrin, “Zamechaniya o lokalnom variante metoda obratnoi zadachi rasseyaniya”, Trudy MIAN, 253 (2006), 46–60 | DOI | MR

[20] A. V. Domrin, “O veschestvenno-analiticheskikh resheniyakh nelineinogo uravneniya Shredingera”, Tr. MMO, 75:2 (2014), 205–218 | DOI

[21] G. A. Mannonov, A. B. Khasanov, “Zadacha Koshi dlya nelineinogo uravneniya Khirota, v klasse periodicheskikh beskonechnozonnykh funktsii”, Algebra i analiz, 34:5 (2022), 139–172

[22] U. B. Muminov, A. B. Khasanov, “Integrirovanie defokusiruyuschego nelineinogo uravneniya Shredingera s dopolnitelnymi chlenami”, TMF, 211:1 (2022), 84–104 | DOI | DOI

[23] U. B. Muminov, A. B. Khasanov, “Zadacha Koshi dlya defokusiruyuschego nelineinogo uravneniya Shredingera s nagruzhennym chlenom”, Matem. tr., 25:1 (2022), 102–133 | DOI

[24] H. P. McKean, E. Trubowitz, “Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points”, Commun. Pure Appl. Math., 29:2 (1976), 143–226 | DOI | MR

[25] H. P. McKean, E. Trubowitz, “Hill's surfaces and their theta functions”, Bull. Amer. Math. Soc., 84:6 (1978), 1052–1085 | DOI | MR

[26] M. U. Schmidt, “Integrable Systems and Riemann Surfaces of Infinite Genus”, Memoirs of the American Mathematical Society, 122, No 581, AMS, Providence, RI, 1996, arXiv: solv-int/9412006 | DOI | MR

[27] T. V. Misyura, “Kharakteristika spektrov periodicheskoi i antiperiodicheskoi kraevykh zadach, porozhdaemykh operatsiei Diraka I”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 30 (1978), 90–101 | MR

[28] A. B. Khasanov, A. M. Ibragimov, “Ob obratnoi zadache dlya operatora Diraka s periodicheskim potentsialom”, Uzb. matem. zhurn., 3–4 (2001), 48–55

[29] E. Trubowitz, “The inverse problem for periodic potentials”, Commun. Pure Appl. Math., 30:3 (1977), 321–337 | DOI | MR

[30] A. B. Khasanov, A. B. Yakhshimuratov, “Analog obratnoi teoremy G. Borga dlya operatora Diraka”, Uzb. matem. zhurn., 3–4 (2000), 40–46

[31] S. Currie, T. T. Roth, B. A. Watson, “Borg's periodicity theorems for first-order self-adjoint systems with complex potentials”, Proc. Edinb. Math. Soc., 60:3 (2017), 615–633 | DOI | MR

[32] D. Bättig, B. Grébert, J.-C. Guillot, T. Kappeler, “Folation of phase space for the cubic nonlinear Schrödinger equation”, Composito Math., 85:2 (1993), 163–199 | MR | Zbl

[33] B. Grébert, J.-C. Guillot, “Gap of one-dimensional periodic AKNS systems”, Forum Math., 5:5 (1993), 459–504 | DOI | MR

[34] E. Korotayev, “Inverse problem and estimates for periodic Zakharov–Shabat systems”, J. Reine Angew. Math., 583:2005 (2005), 87–115 | DOI | MR

[35] E. Korotayev, D. Mokeev, “Dubrovin equation for periodic Dirac operator on the half-line”, Appl. Anal., 101:1 (2020), 337–365 | DOI | MR