Asymptotic expansions for a class of singular integrals emerging in nonlinear wave systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 179-197 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We find asymptotic expansions as $\nu\to 0$ for integrals of the form $\int_{\mathbb{R}^d}F(x)/(\omega^2(x)+\nu^2)\,dx$, where sufficiently smooth functions $F$ and $\omega$ satisfy natural assumptions on their behavior at infinity and all critical points of $\omega$ in the set $\{\omega(x)=0\}$ are nondegenerate. These asymptotic expansions play a crucial role in analyzing stochastic models for nonlinear waves systems. We generalize a result of Kuksin that a similar asymptotic expansion occurs in a particular case where $\omega$ is a nondegenerate quadratic form of signature $(d/2,d/2)$ with even $d$.
Keywords: singular integral, asymptotic analysis, wave turbulence, nonlinear waves system.
@article{TMF_2023_214_2_a0,
     author = {A. V. Dymov},
     title = {Asymptotic expansions for a~class of singular integrals emerging in nonlinear wave systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {179--197},
     year = {2023},
     volume = {214},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a0/}
}
TY  - JOUR
AU  - A. V. Dymov
TI  - Asymptotic expansions for a class of singular integrals emerging in nonlinear wave systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 179
EP  - 197
VL  - 214
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a0/
LA  - ru
ID  - TMF_2023_214_2_a0
ER  - 
%0 Journal Article
%A A. V. Dymov
%T Asymptotic expansions for a class of singular integrals emerging in nonlinear wave systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 179-197
%V 214
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a0/
%G ru
%F TMF_2023_214_2_a0
A. V. Dymov. Asymptotic expansions for a class of singular integrals emerging in nonlinear wave systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 179-197. http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a0/

[1] S. Kuksin, “Asymptotic expansions for some integrals of quotients with degenerated divisors”, Russ. J. Math. Phys., 24:4 (2017), 476–487 | DOI | MR

[2] S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. V. Tsvetkova, “Ob odnom podkhode k vychisleniyu asimptotiki integralov ot bystromenyayuschikhsya funktsii”, Matem. zametki, 103:5 (2018), 680–692 | DOI | DOI | MR

[3] V. E. Zakharov, V. S. L'vov, G. Falkovich, Kolmogorov Spectra of Turbulence I. Wave Turbulence, Springer Series in Nonlinear Dynamics, Springer, Berlin, 1992 | DOI

[4] S. Nazarenko, Wave Turbulence, Lecture Notes in Physics, 825, Springer, Heidelberg, 2011 | DOI | MR

[5] J. Lukkarinen, H. Spohn, “Weakly nonlinear Schrödinger equation with random initial data”, Invent. Math., 183:1 (2015), 79–188 | DOI

[6] T. Buckmaster, P. Germain, Z. Hani, J. Shatah, “Onset of the wave turbulence description of the longtime behaviour of the nonlinear Schrödinger equation”, Invent. Math., 225:3 (2021), 787–855 | DOI | MR

[7] A. Dymov, S. Kuksin, “Formal expansions in stochastic model for wave turbulence 1: kinetic limit”, Commun. Math. Phys., 382:2 (2021), 951–1014 | DOI | MR

[8] A. Dymov, S. Kuksin, A. Maiocchi, S. Vladuts, The large-period limit for equations of discrete turbulence, arXiv: 2104.11967

[9] Y. Deng, Z. Hani, Full derivation of the wave kinetic equation, arXiv: 2104.11204

[10] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii. I. Obobschennye funktsii i deistviya nad nimi, KDU; Dobrosvet, M., 2008 | MR | MR | Zbl

[11] A. Ya. Khinchin, Matematicheskie osnovaniya statisticheskoi mekhaniki, NITs RKhD, IKI, Izhevsk, 2003 | MR

[12] Yu. D. Burago, V. A. Zalgaller, Geometricheskie neravenstva, L., Nauka, 1980 | DOI | MR | MR | Zbl | Zbl