Asymptotic expansions for a~class of singular integrals emerging in nonlinear wave systems
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 179-197
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We find asymptotic expansions as $\nu\to 0$ for integrals of the form $\int_{\mathbb{R}^d}F(x)/(\omega^2(x)+\nu^2)\,dx$, where sufficiently smooth functions $F$ and $\omega$ satisfy natural assumptions on their behavior at infinity and all critical points of $\omega$ in the set $\{\omega(x)=0\}$ are nondegenerate. These asymptotic expansions play a crucial role in analyzing stochastic models for nonlinear waves systems. We generalize a result of Kuksin that a similar asymptotic expansion occurs in a particular case where $\omega$ is a nondegenerate quadratic form of signature $(d/2,d/2)$ with even $d$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
singular integral, asymptotic analysis, wave turbulence, nonlinear waves system.
                    
                  
                
                
                @article{TMF_2023_214_2_a0,
     author = {A. V. Dymov},
     title = {Asymptotic expansions for a~class of singular integrals emerging in nonlinear wave systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {179--197},
     publisher = {mathdoc},
     volume = {214},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a0/}
}
                      
                      
                    TY - JOUR AU - A. V. Dymov TI - Asymptotic expansions for a~class of singular integrals emerging in nonlinear wave systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 179 EP - 197 VL - 214 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a0/ LA - ru ID - TMF_2023_214_2_a0 ER -
A. V. Dymov. Asymptotic expansions for a~class of singular integrals emerging in nonlinear wave systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 179-197. http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a0/
