Asymptotic expansions for a~class of singular integrals emerging in nonlinear wave systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 179-197

Voir la notice de l'article provenant de la source Math-Net.Ru

We find asymptotic expansions as $\nu\to 0$ for integrals of the form $\int_{\mathbb{R}^d}F(x)/(\omega^2(x)+\nu^2)\,dx$, where sufficiently smooth functions $F$ and $\omega$ satisfy natural assumptions on their behavior at infinity and all critical points of $\omega$ in the set $\{\omega(x)=0\}$ are nondegenerate. These asymptotic expansions play a crucial role in analyzing stochastic models for nonlinear waves systems. We generalize a result of Kuksin that a similar asymptotic expansion occurs in a particular case where $\omega$ is a nondegenerate quadratic form of signature $(d/2,d/2)$ with even $d$.
Keywords: singular integral, asymptotic analysis, wave turbulence, nonlinear waves system.
@article{TMF_2023_214_2_a0,
     author = {A. V. Dymov},
     title = {Asymptotic expansions for a~class of singular integrals emerging in nonlinear wave systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {179--197},
     publisher = {mathdoc},
     volume = {214},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a0/}
}
TY  - JOUR
AU  - A. V. Dymov
TI  - Asymptotic expansions for a~class of singular integrals emerging in nonlinear wave systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 179
EP  - 197
VL  - 214
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a0/
LA  - ru
ID  - TMF_2023_214_2_a0
ER  - 
%0 Journal Article
%A A. V. Dymov
%T Asymptotic expansions for a~class of singular integrals emerging in nonlinear wave systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 179-197
%V 214
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a0/
%G ru
%F TMF_2023_214_2_a0
A. V. Dymov. Asymptotic expansions for a~class of singular integrals emerging in nonlinear wave systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 2, pp. 179-197. http://geodesic.mathdoc.fr/item/TMF_2023_214_2_a0/