Vulnerability of quantum cryptography with phase–time coding under attenuation conditions
Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 1, pp. 140-152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The protocol of quantum cryptography with phase–time coding uses a configuration of states with the splitting into bases located in different time windows, as a result of which the eavesdropper information is estimated using two parameters. We show that some attacks using the attenuation in the communication links were not taken into account in analyzing the protocol security. We construct an attack that explicitly demonstrates the protocol vulnerability: the protocol loses its security completely even in the case of an arbitrarily short communication link, i.e., the entire cryptographic key becomes known to the eavesdropper.
Keywords: quantum cryptography, quantum information theory, quantum transformation with the postselection.
@article{TMF_2023_214_1_a6,
     author = {D. A. Kronberg},
     title = {Vulnerability of quantum cryptography with phase{\textendash}time coding under attenuation conditions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {140--152},
     year = {2023},
     volume = {214},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a6/}
}
TY  - JOUR
AU  - D. A. Kronberg
TI  - Vulnerability of quantum cryptography with phase–time coding under attenuation conditions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 140
EP  - 152
VL  - 214
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a6/
LA  - ru
ID  - TMF_2023_214_1_a6
ER  - 
%0 Journal Article
%A D. A. Kronberg
%T Vulnerability of quantum cryptography with phase–time coding under attenuation conditions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 140-152
%V 214
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a6/
%G ru
%F TMF_2023_214_1_a6
D. A. Kronberg. Vulnerability of quantum cryptography with phase–time coding under attenuation conditions. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 1, pp. 140-152. http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a6/

[1] C. H. Bennett, G. Brassard, “Quantum cryptography: Public key distribution and coin tossing”, Proceedings of IEEE International Conference on Computers, Systems Signal Processing (Bangalore, India, December 10–12, 1984), IEEE Press, New York, 1984, 175–179 | DOI

[2] N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography”, Rev. Modern Phys., 74:1 (2002), 145–195, arXiv: quant-ph/0101098 | DOI

[3] S. Pirandola, U. L. Andersen, L. Banchi et al., Adv. Opt. Photonics, 12:4 (2020), 1012–1236, arXiv: 1906.01645 | DOI

[4] A. S. Trushechkin, “Ob operatsionnom smysle i prakticheskikh aspektakh ispolzovaniya parametra stoikosti v kvantovom raspredelenii klyuchei”, Kvantovaya elektronika, 50:5 (2020), 426–439 | DOI

[5] S. P. Kulik, S. N. Molotkov, A. P. Makkaveev, “Kombinirovannyi fazovo-vremennoi metod kodirovaniya v kvantovoi kriptografii”, Pisma v ZhETF, 85:6 (2007), 354–359 | DOI

[6] S. N. Molotkov, “O kriptograficheskoi stoikosti sistemy kvantovoi kriptografii s fazovo-vremennym kodirovaniem”, ZhETF, 133:1 (2008), 5–24

[7] S. N. Molotkov, “O stoikosti kvantovogo raspredeleniya klyuchei s fazovo-vremennym kodirovaniem pri bolshikh dlinakh linii svyazi”, Pisma v ZhETF, 88:4 (2008), 315–320 | DOI | MR

[8] D. A. Kronberg, S. N. Molotkov, “Dvukhparametricheskaya kvantovaya kriptografiya na vremennýkh sdvigakh, ustoichivaya k atake s rasschepleniem po chislu fotonov”, ZhETF, 136:4 (2009), 650 | DOI

[9] D. A. Kronberg, S. N. Molotkov, “Kvantovaya skhema dlya optimalnogo podslushivaniya kvantovogo raspredeleniya klyuchei s fazovo-vremenným kodirovaniem”, ZhETF, 138:1 (2010), 33–66 | DOI

[10] A. N. Klimov, K. A. Balygin, S. N. Molotkov, “Two-parameter single-pass plug and play quantum cryptography without adjustment of states in the quantum channel”, Laser Phys. Lett., 15:7 (2018), 075207 | DOI

[11] S. N. Molotkov, “Tight finite-key analysis for two-parametric quantum key distribution”, Laser Phys. Lett., 16:3 (2019), 035203 | DOI

[12] I. V. Sinilschikov, S. N. Molotkov, “Sostoyaniya ‘lovushki’, kody korrektsii oshibok s nizkoi plotnostyu proverok na chetnost v kvantovoi kriptografii s fazovo-vremennym kodirovaniem”, ZhETF, 156:8 (2019), 205–238 | DOI

[13] S. N. Molotkov, “O stoikosti sistem kvantovoi kriptografii s fazovo-vremenným kodirovaniem k atakam aktivnogo zondirovaniya”, ZhETF, 158:6(12) (2020), 1011–1031 | DOI

[14] A. S. Kholevo, Kvantovye sistemy, kanaly, informatsiya, MTsNMO, M., 2010 | DOI | MR | Zbl

[15] I. Devetak, A. Winter, “Distillation of secret key and entanglement from quantum states”, Proc. Roy. Soc. London Ser. A, 461:2053 (2005), 207–235 | DOI | MR

[16] M. Dusek, M. Jahma, N. Lütkenhaus, “Unambiguous state discrimination in quantum cryptography with weak coherent states”, Phys. Rev. A, 62:2 (2000), 022306, 9 pp., arXiv: quant-ph/9910106 | DOI | MR

[17] G. Brassard, N. Lütkenhaus, T. Mor, B. C. Sanders, “Limitations on practical quantum cryptography”, Phys. Rev. Lett., 85:6 (2000), 1330–1333, arXiv: quant-ph/9911054 | DOI

[18] D. A. Kronberg, “A simple coherent attack and practical security of differential phase shift quantum cryptography”, Laser Phys., 24:2 (2014), 025202 | DOI

[19] D. A. Kronberg, Yu. V. Kurochkin, “O roli fluktuatsii intensivnosti v kvantovoi kriptografii na osnove kogerentnykh sostoyanii”, Kvantovaya elektronika, 48:9 (2018), 843–848 | DOI

[20] D. A. Kronberg, A. S. Nikolaeva, Y. V. Kurochkin, A. K. Fedorov, “Quantum soft filtering for the improved security analysis of the coherent one-way quantum-key-distribution protocol”, Phys. Rev. A, 101:3 (2000), 032334, 7 pp., arXiv: 1910.06167 | DOI | MR

[21] D. A. Kronberg, “Generalized discrimination between symmetric coherent states for eavesdropping in quantum cryptography”, Lobachevskii J. Math., 41:12 (2020), 2332–2337 | DOI | MR

[22] A. S. Avanesov, D. A. Kronberg, “On eavesdropping strategy for symmetric coherent states quantum cryptography using heterodyne measurement”, Lobachevskii J. Math., 42:10 (2021), 2285–2294 | DOI | MR

[23] D. A. Kronberg, “Ob uyazvimostyakh kvantovoi kriptografii na geometricheski odnorodnykh kogerentnykh sostoyaniyakh”, Kvantovaya elektronika, 51:10 (2021), 928–937 | DOI

[24] D. A. Kronberg, “Comment on ‘Practical quantum key distribution with geometrically uniform states’ ”, Phys. Rev. A, 104:2 (2001), 026401, 3 pp. | DOI

[25] A. Acin, N. Gisin, V. Scarani, “Coherent-pulse implementations of quantum cryptography protocols resistant to photon-number-splitting attacks”, Phys. Rev. A, 69:1 (2004), 012309, 16 pp., arXiv: quant-ph/0302037 | DOI

[26] H.-K. Lo, X. Ma, K. Chen, “Decoy state quantum key distribution”, Phys. Rev. Lett., 94:23 (2005), 230504, 4 pp. | DOI

[27] X. Ma, B. Qi, Y. Zhao, H.-K. Lo, “Practical decoy state for quantum key distribution”, Phys. Rev. A, 72:1 (2005), 012326, 15 pp. | DOI

[28] D. Gottesman, H.-K. Lo, N. Lütkenhaus, J. Preskill, “Security of quantum key distribution with imperfect devices”, IEEE International Symposium on Information Theory (Chicago Downtown Marriott, Chicago, IL, USA, 27 June 2004 – 02 July, 2004), IEEE Press, New York, 2004, 136 | DOI