Gateway-like absurdly benign traversable wormhole solutions
Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 1, pp. 122-139 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A class of wormhole solutions is constructed that has restricted polar degrees of freedom to achieve a gateway-like configuration. This compels the use of distribution-valued metrics and connections, which further compels the use of neutrix product of distributions, to define distribution-valued curvature, the Einstein tensor, and other relevant quantities. Th solution requires a space–time with non-Riemannian effects like nonmetricity to be consistent and well defined, due to the nonassociativity of the neutrix product. Finally, the ideal gateway configuration where the negative energy requirement is zero is derived.
Keywords: wormholes, non-Riemannian geometry, hyperfluids, general relativity, distributional neutrix products.
@article{TMF_2023_214_1_a5,
     author = {A. K. Mehta},
     title = {Gateway-like absurdly benign traversable wormhole solutions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {122--139},
     year = {2023},
     volume = {214},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a5/}
}
TY  - JOUR
AU  - A. K. Mehta
TI  - Gateway-like absurdly benign traversable wormhole solutions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 122
EP  - 139
VL  - 214
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a5/
LA  - ru
ID  - TMF_2023_214_1_a5
ER  - 
%0 Journal Article
%A A. K. Mehta
%T Gateway-like absurdly benign traversable wormhole solutions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 122-139
%V 214
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a5/
%G ru
%F TMF_2023_214_1_a5
A. K. Mehta. Gateway-like absurdly benign traversable wormhole solutions. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 1, pp. 122-139. http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a5/

[1] A. Einstein, N. Rosen, “The particle problem in the general theory of relativity”, Phys. Rev., 48:1 (1935), 73–77 | DOI

[2] E. I. Guendelman, A. Kaganovich, E. Nissimov, S. Pachev, “Einstein–Rosen ‘bridge’ needs lightlike brane source”, Phys. Lett. B, 681:5 (2009), 457–462, arXiv: 0904.3198 | DOI | MR

[3] H. G. Ellis, “Ether flow through a drainhole: A particle model in general relativity”, J. Math. Phys., 14:1 (1973), 104–118 | DOI | MR

[4] K. A. Bronnikov, “Scalar-tensor theory and scalar charge”, Acta Phys. Polon. B, 4:2 (1973), 251–266 | MR

[5] G. Clément, “A class of wormhole solutions to higher-dimensional general relativity”, Gen. Rel. Grav., 16:2 (1984), 131–138 | DOI | MR

[6] J. F. Woodward, “Making stargates: the physics of traversable absurdly benign wormholes”, Phys. Procedia, 20 (2011), 24–46 | DOI

[7] R. Garattini, “Generalized absurdly benign traversable wormholes powered by Casimir energy”, Eur. Phys. J. C, 80:12 (2020), 1172, 11 pp. | DOI

[8] M. S. Morris, K. S. Thorne, “Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity”, Amer. J. Phys., 56:5 (1988), 395–412 | DOI | MR

[9] J. G. van der Corput, “Introduction to the neutrix calculus”, J. Anal. Math., 7:1 (1959), 281–398 | DOI | MR

[10] B. Fisher, “The product of distributions”, Quart. J. Math., 22:2 (1971), 291–298 | DOI | MR

[11] J. Mikusiński, “On the square of the Dirac delta-distribution”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 14:3 (1966), 511–513 | MR

[12] D. Iosifidis, “Cosmological hyperfluids, torsion and non-metricity”, Eur. Phys. J. C, 80:11 (2020), 1042, 20 pp. | DOI

[13] D. Iosifidis, “Non-Riemannian cosmology: the role of shear hypermomentum”, Internat. J. Geom. Methods Modern Phys., 18: suppl. 1 (2021), 2150129, 19 pp. | DOI | MR

[14] D. Puetzfeld, Y. N. Obukhov, “Probing non-Riemannian spacetime geometry”, Phys. Lett. A, 372:45 (2008), 6711–6716, arXiv: 0708.1926 | DOI | MR

[15] G. J. Olmo, D. Rubiera-Garcia, “Non-Riemannian geometry: towards new avenues for the physics of modified gravity”, J. Phys.: Conf. Ser., 600:1 (2015), 012041, 7 pp., arXiv: 1506.02139 | DOI

[16] B. Fisher, L.-Z. Cheng, “The product of distributions on $R^{m\,}$”, Comment. Math. Univ. Carolin., 33:4 (1992), 605–614 | MR

[17] E. L. Koh, L. C. Kuan, “On the distributions $\delta^k$ and $(\delta')^k$”, Math. Nachr., 157:1 (1992), 243–248 | DOI | MR