@article{TMF_2023_214_1_a5,
author = {A. K. Mehta},
title = {Gateway-like absurdly benign traversable wormhole solutions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {122--139},
year = {2023},
volume = {214},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a5/}
}
A. K. Mehta. Gateway-like absurdly benign traversable wormhole solutions. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 1, pp. 122-139. http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a5/
[1] A. Einstein, N. Rosen, “The particle problem in the general theory of relativity”, Phys. Rev., 48:1 (1935), 73–77 | DOI
[2] E. I. Guendelman, A. Kaganovich, E. Nissimov, S. Pachev, “Einstein–Rosen ‘bridge’ needs lightlike brane source”, Phys. Lett. B, 681:5 (2009), 457–462, arXiv: 0904.3198 | DOI | MR
[3] H. G. Ellis, “Ether flow through a drainhole: A particle model in general relativity”, J. Math. Phys., 14:1 (1973), 104–118 | DOI | MR
[4] K. A. Bronnikov, “Scalar-tensor theory and scalar charge”, Acta Phys. Polon. B, 4:2 (1973), 251–266 | MR
[5] G. Clément, “A class of wormhole solutions to higher-dimensional general relativity”, Gen. Rel. Grav., 16:2 (1984), 131–138 | DOI | MR
[6] J. F. Woodward, “Making stargates: the physics of traversable absurdly benign wormholes”, Phys. Procedia, 20 (2011), 24–46 | DOI
[7] R. Garattini, “Generalized absurdly benign traversable wormholes powered by Casimir energy”, Eur. Phys. J. C, 80:12 (2020), 1172, 11 pp. | DOI
[8] M. S. Morris, K. S. Thorne, “Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity”, Amer. J. Phys., 56:5 (1988), 395–412 | DOI | MR
[9] J. G. van der Corput, “Introduction to the neutrix calculus”, J. Anal. Math., 7:1 (1959), 281–398 | DOI | MR
[10] B. Fisher, “The product of distributions”, Quart. J. Math., 22:2 (1971), 291–298 | DOI | MR
[11] J. Mikusiński, “On the square of the Dirac delta-distribution”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 14:3 (1966), 511–513 | MR
[12] D. Iosifidis, “Cosmological hyperfluids, torsion and non-metricity”, Eur. Phys. J. C, 80:11 (2020), 1042, 20 pp. | DOI
[13] D. Iosifidis, “Non-Riemannian cosmology: the role of shear hypermomentum”, Internat. J. Geom. Methods Modern Phys., 18: suppl. 1 (2021), 2150129, 19 pp. | DOI | MR
[14] D. Puetzfeld, Y. N. Obukhov, “Probing non-Riemannian spacetime geometry”, Phys. Lett. A, 372:45 (2008), 6711–6716, arXiv: 0708.1926 | DOI | MR
[15] G. J. Olmo, D. Rubiera-Garcia, “Non-Riemannian geometry: towards new avenues for the physics of modified gravity”, J. Phys.: Conf. Ser., 600:1 (2015), 012041, 7 pp., arXiv: 1506.02139 | DOI
[16] B. Fisher, L.-Z. Cheng, “The product of distributions on $R^{m\,}$”, Comment. Math. Univ. Carolin., 33:4 (1992), 605–614 | MR
[17] E. L. Koh, L. C. Kuan, “On the distributions $\delta^k$ and $(\delta')^k$”, Math. Nachr., 157:1 (1992), 243–248 | DOI | MR