Prüfer transformation and its application to the numerical description of the motion of quantum particles with various spins in the fields of classical black holes
Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 1, pp. 102-121 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Stable and reliable numerical integration of second-order radial equations in the fields of classical black holes can be performed by using the Prüfer transformation and by passing to the use of phase functions, which allows uniquely selecting the solutions with physical asymptotics in numerical calculations.
Keywords: stationary states, black holes, second-order equations, singular points and their classification.
Mots-clés : Prüfer transformation and phase functions
@article{TMF_2023_214_1_a4,
     author = {V. P. Neznamov and I. I. Safronov and V. E. Shemarulin},
     title = {Pr\"ufer transformation and its application to the~numerical description of the~motion of quantum particles with various spins in the~fields of classical black holes},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {102--121},
     year = {2023},
     volume = {214},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a4/}
}
TY  - JOUR
AU  - V. P. Neznamov
AU  - I. I. Safronov
AU  - V. E. Shemarulin
TI  - Prüfer transformation and its application to the numerical description of the motion of quantum particles with various spins in the fields of classical black holes
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 102
EP  - 121
VL  - 214
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a4/
LA  - ru
ID  - TMF_2023_214_1_a4
ER  - 
%0 Journal Article
%A V. P. Neznamov
%A I. I. Safronov
%A V. E. Shemarulin
%T Prüfer transformation and its application to the numerical description of the motion of quantum particles with various spins in the fields of classical black holes
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 102-121
%V 214
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a4/
%G ru
%F TMF_2023_214_1_a4
V. P. Neznamov; I. I. Safronov; V. E. Shemarulin. Prüfer transformation and its application to the numerical description of the motion of quantum particles with various spins in the fields of classical black holes. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 1, pp. 102-121. http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a4/

[1] V. P. Neznamov, “Uravneniya vtorogo poryadka dlya fermionov v prostranstve-vremeni Shvartsshilda, Raissnera–Nordstrema, Kerra i Kerra–Nyumena”, TMF, 197:3 (2018), 493–509 | DOI | DOI | MR

[2] V. P. Neznamov, I. I. Safronov, “Statsionarnye resheniya uravneniya vtorogo poryadka dlya tochechnykh fermionov v gravitatsionnom pole Shvartsshilda”, ZhETF, 154:4 (2018), 761–773, arXiv: 1809.08940 | DOI | DOI

[3] V. P. Neznamov, I. I. Safronov, V. E. Shemarulin, “Statsionarnye resheniya uravneniya vtorogo poryadka dlya fermionov v prostranstve-vremeni Raissnera-Nordstrema”, ZhETF, 154:4 (2018), 802–825, arXiv: 1810.01960 | DOI | DOI

[4] V. P. Neznamov, I. I. Safronov, V. E. Shemarulin, “Statsionarnye resheniya uravneniya vtorogo poryadka dlya fermionov v prostranstve-vremeni Kerra–Nyumena”, ZhETF, 155:1 (2019), 69–95, arXiv: 1904.05791 | DOI | DOI

[5] V. P. Neznamov, I. I. Safronov, “Statsionarnye resheniya uravneniya vtorogo poryadka dlya fermionov vo vneshnem kulonovskom pole”, ZhETF, 155:5 (2019), 792–805, arXiv: 1907.03579 | DOI | DOI

[6] V. P. Neznamov, I. I. Safronov, V. E. Shemarulin, “Novoe o radialnykh volnovykh funktsiyakh fermionov v ottalkivayuschem kulonovskom pole”, EChAYa, 53:6 (2022), 1401–1420

[7] V. P. Neznamov, V. E. Shemarulin, “Quantum electrodynamics with self-conjugated equations with spinor wave functions for fermion fields”, Internat. J. Modern Phys. A, 36:14 (2021), 2150086, 30 pp., arXiv: 2108.04664 | DOI | MR

[8] V. P. Neznamov, “The lack of vacuum polarization in quantum electrodynamics with spinors in fermion equations”, Internat. J. Modern Phys. A, 36:24 (2021), 2150173, 10 pp., arXiv: 2110.03530 | DOI | MR

[9] M. V. Gorbatenko, V. P. Neznamov, “Kvantovaya mekhanika statsionarnykh sostoyanii chastits v prostranstve-vremeni klassicheskikh chernykh dyr”, TMF, 205:2 (2020), 284–323, arXiv: 2012.04491 | DOI | DOI | MR

[10] K. M. Case, “Singular potentials”, Phys. Rev., 80:5 (1950), 797–806 | DOI

[11] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. III, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Fizmatlit, M., 1963 | MR | MR

[12] A. M. Perelomov, V. S. Popov, “ ‘Padenie na tsentr’ v kvantovoi mekhanike”, TMF, 4:1 (1970), 48–65 | DOI

[13] H. Prüfer, “Neue Herleitung der Sturm–Liouvilleschen Reihenentwicklung stetiger Funktionen”, Math. Ann., 95:1 (1926), 499–518 | MR

[14] V. B. Uvarov, V. I. Aldonyasov, “Fazovyi metod opredeleniya sobstvennykh znachenii dlya uravnenii Shredingera”, Zh. vychisl. matem. i matem. fiz., 7:2 (1967), 436–440 | DOI | Zbl

[15] A. F. Andreev, Osobye tochki differentsialnykh uravnenii, Vysheishaya shkola, Minsk, 1979

[16] Yu. V. Prokhorov (Gl. red.), Matematicheskii entsiklopedicheskii slovar, Sov. entsiklopediya, M., 1988 | MR

[17] E. Khairer, G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999 | DOI | MR