Mots-clés : Prüfer transformation and phase functions
@article{TMF_2023_214_1_a4,
author = {V. P. Neznamov and I. I. Safronov and V. E. Shemarulin},
title = {Pr\"ufer transformation and its application to the~numerical description of the~motion of quantum particles with various spins in the~fields of classical black holes},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {102--121},
year = {2023},
volume = {214},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a4/}
}
TY - JOUR AU - V. P. Neznamov AU - I. I. Safronov AU - V. E. Shemarulin TI - Prüfer transformation and its application to the numerical description of the motion of quantum particles with various spins in the fields of classical black holes JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 102 EP - 121 VL - 214 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a4/ LA - ru ID - TMF_2023_214_1_a4 ER -
%0 Journal Article %A V. P. Neznamov %A I. I. Safronov %A V. E. Shemarulin %T Prüfer transformation and its application to the numerical description of the motion of quantum particles with various spins in the fields of classical black holes %J Teoretičeskaâ i matematičeskaâ fizika %D 2023 %P 102-121 %V 214 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a4/ %G ru %F TMF_2023_214_1_a4
V. P. Neznamov; I. I. Safronov; V. E. Shemarulin. Prüfer transformation and its application to the numerical description of the motion of quantum particles with various spins in the fields of classical black holes. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 1, pp. 102-121. http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a4/
[1] V. P. Neznamov, “Uravneniya vtorogo poryadka dlya fermionov v prostranstve-vremeni Shvartsshilda, Raissnera–Nordstrema, Kerra i Kerra–Nyumena”, TMF, 197:3 (2018), 493–509 | DOI | DOI | MR
[2] V. P. Neznamov, I. I. Safronov, “Statsionarnye resheniya uravneniya vtorogo poryadka dlya tochechnykh fermionov v gravitatsionnom pole Shvartsshilda”, ZhETF, 154:4 (2018), 761–773, arXiv: 1809.08940 | DOI | DOI
[3] V. P. Neznamov, I. I. Safronov, V. E. Shemarulin, “Statsionarnye resheniya uravneniya vtorogo poryadka dlya fermionov v prostranstve-vremeni Raissnera-Nordstrema”, ZhETF, 154:4 (2018), 802–825, arXiv: 1810.01960 | DOI | DOI
[4] V. P. Neznamov, I. I. Safronov, V. E. Shemarulin, “Statsionarnye resheniya uravneniya vtorogo poryadka dlya fermionov v prostranstve-vremeni Kerra–Nyumena”, ZhETF, 155:1 (2019), 69–95, arXiv: 1904.05791 | DOI | DOI
[5] V. P. Neznamov, I. I. Safronov, “Statsionarnye resheniya uravneniya vtorogo poryadka dlya fermionov vo vneshnem kulonovskom pole”, ZhETF, 155:5 (2019), 792–805, arXiv: 1907.03579 | DOI | DOI
[6] V. P. Neznamov, I. I. Safronov, V. E. Shemarulin, “Novoe o radialnykh volnovykh funktsiyakh fermionov v ottalkivayuschem kulonovskom pole”, EChAYa, 53:6 (2022), 1401–1420
[7] V. P. Neznamov, V. E. Shemarulin, “Quantum electrodynamics with self-conjugated equations with spinor wave functions for fermion fields”, Internat. J. Modern Phys. A, 36:14 (2021), 2150086, 30 pp., arXiv: 2108.04664 | DOI | MR
[8] V. P. Neznamov, “The lack of vacuum polarization in quantum electrodynamics with spinors in fermion equations”, Internat. J. Modern Phys. A, 36:24 (2021), 2150173, 10 pp., arXiv: 2110.03530 | DOI | MR
[9] M. V. Gorbatenko, V. P. Neznamov, “Kvantovaya mekhanika statsionarnykh sostoyanii chastits v prostranstve-vremeni klassicheskikh chernykh dyr”, TMF, 205:2 (2020), 284–323, arXiv: 2012.04491 | DOI | DOI | MR
[10] K. M. Case, “Singular potentials”, Phys. Rev., 80:5 (1950), 797–806 | DOI
[11] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. III, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Fizmatlit, M., 1963 | MR | MR
[12] A. M. Perelomov, V. S. Popov, “ ‘Padenie na tsentr’ v kvantovoi mekhanike”, TMF, 4:1 (1970), 48–65 | DOI
[13] H. Prüfer, “Neue Herleitung der Sturm–Liouvilleschen Reihenentwicklung stetiger Funktionen”, Math. Ann., 95:1 (1926), 499–518 | MR
[14] V. B. Uvarov, V. I. Aldonyasov, “Fazovyi metod opredeleniya sobstvennykh znachenii dlya uravnenii Shredingera”, Zh. vychisl. matem. i matem. fiz., 7:2 (1967), 436–440 | DOI | Zbl
[15] A. F. Andreev, Osobye tochki differentsialnykh uravnenii, Vysheishaya shkola, Minsk, 1979
[16] Yu. V. Prokhorov (Gl. red.), Matematicheskii entsiklopedicheskii slovar, Sov. entsiklopediya, M., 1988 | MR
[17] E. Khairer, G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999 | DOI | MR