Mots-clés : transition amplitudes
@article{TMF_2023_214_1_a3,
author = {Sh. M. Nagiyev and R. M. Mir-Kasimov},
title = {Relativistic linear oscillator under the~action of a~constant external force. {Transition} amplitudes and {the~Green's} function},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {81--101},
year = {2023},
volume = {214},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a3/}
}
TY - JOUR AU - Sh. M. Nagiyev AU - R. M. Mir-Kasimov TI - Relativistic linear oscillator under the action of a constant external force. Transition amplitudes and the Green's function JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 81 EP - 101 VL - 214 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a3/ LA - ru ID - TMF_2023_214_1_a3 ER -
%0 Journal Article %A Sh. M. Nagiyev %A R. M. Mir-Kasimov %T Relativistic linear oscillator under the action of a constant external force. Transition amplitudes and the Green's function %J Teoretičeskaâ i matematičeskaâ fizika %D 2023 %P 81-101 %V 214 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a3/ %G ru %F TMF_2023_214_1_a3
Sh. M. Nagiyev; R. M. Mir-Kasimov. Relativistic linear oscillator under the action of a constant external force. Transition amplitudes and the Green's function. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 1, pp. 81-101. http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a3/
[1] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika (nerelyativistskaya teoriya), Nauka, M., 1989 | MR
[2] A. I. Baz, Ya. B. Zeldovich, A. M. Perelomov, Rasseyanie, reaktsii i raspady v nerelyativistskoi kvantovoi mekhanike, Nauka, M., 1971
[3] M. Moshinsky, Yu. F. Smirnov, The Harmonic Oscillator in Modern Physics, Contemporary Concepts in Physics, 9, Harwood Academic Publ., Amsterdam, 1996 | Zbl
[4] V. B. Berestetskii, E. M. Lifshits, L. P. Pitaevskii, Teoreticheskaya fizika, v. 4, Kvantovaya elektrodinamika, Nauka, M., 1980 | MR
[5] H. Yukawa, “Structure and mass spectrum of elementary particles. II. Oscillator model”, Phys. Rev., 91:2 (1953), 416–417 | DOI | MR
[6] M. Markov, “On dynamically deformable form factors in the theory of elementary particles”, Nuovo Cimento, 3:supp. 4 (1956), 760–772 | DOI | MR
[7] R. P. Feynman, M. Kislinger, F. Ravndal, “Current matrix elements from a relativisti quark model”, Phys. Rev. D, 3:11 (1971), 2706–2732 | DOI
[8] T. De, Y. S. Kim, M. E. Noz, “Radial effects in the symmetric quark model”, Nuovo Cimento A, 13:4 (1973), 1089–1101 | DOI
[9] Y. S. Kim, M. E. Noz, “Group theory of covariant harmonic oscillators”, Am. J. Phys., 46:5 (1978), 480–483 | DOI
[10] Y. S. Kim, M. E. Noz, “Relativistic harmonic oscillators and hadronic structure in the quantum-mechanics curriculum”, Am. J. Phys., 46:5 (1978), 484–488 | DOI
[11] M. Moshinsky, A. Szczepaniak, “The Dirac oscillator”, J. Phys. A: Math. Gen., 22:17 (1989), L817–L819 | DOI | MR
[12] O. L. de Lange, “Shift operators for a Dirac oscillator”, J. Math. Phys., 32:5 (1991), 1296–1300 | DOI | MR
[13] Z.-F. Li, J.-J. Liu, W. Lucha, W.-G. Ma, F. F. Schöberl, “Relativistic harmonic oscillator”, J. Math. Phys., 46:10 (2005), 103514, 11 pp., arXiv: hep-ph/0501268 | DOI | MR
[14] K. Kowalski, J. Rembieliński, “Relativistic massless harmonic oscillator”, Phys. Rev. A, 81:1 (2010), 012118, 6 pp., arXiv: 1002.0474 | DOI
[15] A. D. Donkov, V. G. Kadyshevskii, M. D. Mateev, R. M. Mir-Kasimov, “Kvazipotentsialnoe uravnenie dlya relyativistskogo garmonicheskogo ostsillyatora”, TMF, 8:1 (1971), 61–72 | DOI
[16] N. M. Atakishiev, R. M. Mir-Kasimov, Sh. M. Nagiev, “Kvazipotentsialnye modeli relyativistskogo ostsillyatora”, TMF, 44:1 (1980), 47–62 | DOI | MR
[17] N. M. Atakishiev, “Kvazipotentsialnye volnovye funktsii relyativistskogo garmonicheskogo ostsillyatora i mnogochleny Pollacheka”, TMF, 58:2 (1984), 254–260 | DOI | MR
[18] N. M. Atakishiyev, R. M. Mir-Kasimov, Sh. M. Nagiyev, “A relativistic model of the isotropic oscillator”, Ann. Phys., 497:1 (1985), 25–30 | DOI | MR
[19] R. M. Mir-Kasimov, Sh. M. Nagiev, E. Dzh. Kagramanov, Relyativistskii lineinyi ostsillyator pod deistviem postoyannoi vneshnei sily i bilineinaya proizvodyaschaya funktsiya dlya polinomov Pollacheka, Preprint No214, SKB IFAN AzSSR, Baku, 1987
[20] E. D. Kagramanov, R. M. Mir-Kasimov, Sh. M. Nagiyev, “The covariant linear oscillator and generalized realization of the dynamical $\mathrm{SU}(1,1)$ symmetry algebra”, J. Math. Phys., 31:7 (1990), 1733–1738 | DOI | MR
[21] R. M. Mir-Kasimov, “$\mathrm{SU}_q(1,1)$ and the relativistic oscillator”, J. Phys. A: Math. Gen., 24:18 (1991), 4283–4302 | DOI | MR
[22] Yu. A. Grishechkin, V. N. Kapshai, “Reshenie uravneniya Logunova–Tavkhelidze dlya trekhmernogo ostsillyatornogo potentsiala v relyativistskom konfiguratsionnom predstavlenii”, Izv. vuzov. Fizika, 61:9 (2018), 83–89 | DOI
[23] N. M. Atakishiyev, Sh. M. Nagiyev, K. B. Wolf, “Realization of $Sp(2,\mathfrak{R})$ by finite-difference operators: the relativistic oscillator in an external field”, J. Group Theor. Phys., 3:1 (1995), 61–70 | MR
[24] Sh. M. Nagiev, R. M. Mir-Kasimov, “Relyativistskii lineinyi ostsillyator pod deistviem postoyannoi vneshnei sily. Volnovye funktsii i dinamieskaya gruppa simmetrii”, TMF, 208:3 (2021), 481–494 | DOI | DOI
[25] Yu. A. Grishechkin, V. N. Kapshai, “Priblizhennoe reshenie uravneniya Logunova–Tavkhelidze dlya odnomernogo ostsillyatornogo potentsiala v relyativistskom konfiguratsionnom predstavlenii”, TMF, 211:3 (2022), 455–468 | DOI | DOI
[26] V. G. Kadyshevsky, R. M. Mir-Kasimov, N. B. Skachkov, “Quasi-potential approach and the expansion in relativistic spherical functions”, Nuovo Cimento A, 55:2 (1968), 233–257 | DOI
[27] V. G. Kadyshevskii, R. M. Mir-Kasimov, N. B. Skachkov, “Trekhmernaya formulirovka relyativistskoi problemy dvukh tel”, EChAYa, 2:3 (1972), 635–690 | DOI
[28] N. M. Atakishiyev, K. B. Wolf, “Generalized coherent states for a relativistic model of the linear oscillator in a homogeneous external field”, Rep. Math. Phys., 27:3 (1989), 305–311 | DOI | MR
[29] N. M. Atakishiev, Sh. M. Nagiev, K. B. Volf, “O funktsiyakh raspredeleniya Vignera dlya relyativistskogo lineinogo ostsillyatora”, TMF, 114:3 (1998), 410–425 | DOI | DOI | MR | Zbl
[30] Sh. M. Nagiyev, G. H. Guliyeva, E. I. Jafarov, “The Wigner function of the relativistic finite-difference oscillator in an external field”, J. Phys. A: Math. Theor., 42:45 (2009), 454015, 10 pp. | DOI | MR
[31] K. Husimi, “Miscellanea in elementary quantum mechanics, II”, Progr. Theor. Phys., 9:4 (1953), 381–402 | DOI
[32] E. H. Kerner, “Note on the forced and damped oscillator in quantum mechanics”, Can. J. Phys., 36 (1958), 371–377 | DOI
[33] Sh. M. Nagiev, A. I. Akhmedov, “O vremennoi evolyutsii kvadratichnykh kvantovykh sistem: operatory evolyutsii, propagatory, invarianty”, TMF, 198:3 (2019), 451–472 | DOI | DOI | MR
[34] A. Barut, R. Ronchka, Teoriya predstavlenii grupp i ee prilozheniya, v. 2, Mir, M., 1980 | DOI | MR | Zbl | Zbl
[35] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady, v. 3, Spetsialnye funktsii, Nauka, M., 1983 | MR
[36] R. W. Fuller, S. M. Harris, E. L. Slaggie, “$S$-matrix solution for the forced harmonic oscillator”, Am. J. Phys., 31:6 (1963), 431–439 | MR
[37] P. Carruthers, M. M. Nieto, “Coherent states and forced quantum oscillator”, Am. J. Phys., 33:7 (1965), 537–544 | DOI | MR
[38] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR
[39] R. Koekoek, P. A. Lesky, R. F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their q-Analogues, Springer, Berlin, 2010 | DOI | MR
[40] M. M. Nieto, D. R. Truax, “Holstein–Primakoff/Bogoliubov transformations and multiboson system”, Fortschr. Phys., 45:2 (1997), 145–156 | DOI | MR
[41] A. M. Perelomov, “Coherent states for arbitrary Lie group”, Commun. Math. Phys., 26:3 (1972), 222–236 | DOI | MR
[42] A. O. Barut, L. Girardello, “New ‘coherent’ states associated with non-compact groups”, Commun. Math. Phys., 21:1 (1971), 41–55 | DOI | MR
[43] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady, v. 1, Elementarnye funktsii, Nauka, M., 2002 | MR | MR | Zbl