Relativistic linear oscillator under the action of a constant external force. Transition amplitudes and the Green's function
Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 1, pp. 81-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss an exactly solvable relativistic model of a nonrelativistic linear harmonic oscillator in the presence of a constant external force. We show that as in the nonrelativistic case, the relativistic linear oscillator in an external uniform field is unitarily equivalent to the oscillator without this field. Using two methods, we calculate transition amplitudes between energy states of the discrete spectrum of the relativistic linear oscillator under the action of a suddenly applied uniform field. We find Barut–Girardello coherent states and the Green's function in the coordinate and momentum representations. We obtain the linear and bilinear generating functions for the Meixner–Pollaczek polynomials. We prove that the relativistic wave functions, the generators of the dynamical symmetry group, and the transition amplitudes have the correct nonrelativistic limit.
Keywords: relativistic linear oscillator model, uniform field, dynamical symmetry group, coherent state, Green's function.
Mots-clés : transition amplitudes
@article{TMF_2023_214_1_a3,
     author = {Sh. M. Nagiyev and R. M. Mir-Kasimov},
     title = {Relativistic linear oscillator under the~action of a~constant external force. {Transition} amplitudes and {the~Green's} function},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {81--101},
     year = {2023},
     volume = {214},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a3/}
}
TY  - JOUR
AU  - Sh. M. Nagiyev
AU  - R. M. Mir-Kasimov
TI  - Relativistic linear oscillator under the action of a constant external force. Transition amplitudes and the Green's function
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 81
EP  - 101
VL  - 214
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a3/
LA  - ru
ID  - TMF_2023_214_1_a3
ER  - 
%0 Journal Article
%A Sh. M. Nagiyev
%A R. M. Mir-Kasimov
%T Relativistic linear oscillator under the action of a constant external force. Transition amplitudes and the Green's function
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 81-101
%V 214
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a3/
%G ru
%F TMF_2023_214_1_a3
Sh. M. Nagiyev; R. M. Mir-Kasimov. Relativistic linear oscillator under the action of a constant external force. Transition amplitudes and the Green's function. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 1, pp. 81-101. http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a3/

[1] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika (nerelyativistskaya teoriya), Nauka, M., 1989 | MR

[2] A. I. Baz, Ya. B. Zeldovich, A. M. Perelomov, Rasseyanie, reaktsii i raspady v nerelyativistskoi kvantovoi mekhanike, Nauka, M., 1971

[3] M. Moshinsky, Yu. F. Smirnov, The Harmonic Oscillator in Modern Physics, Contemporary Concepts in Physics, 9, Harwood Academic Publ., Amsterdam, 1996 | Zbl

[4] V. B. Berestetskii, E. M. Lifshits, L. P. Pitaevskii, Teoreticheskaya fizika, v. 4, Kvantovaya elektrodinamika, Nauka, M., 1980 | MR

[5] H. Yukawa, “Structure and mass spectrum of elementary particles. II. Oscillator model”, Phys. Rev., 91:2 (1953), 416–417 | DOI | MR

[6] M. Markov, “On dynamically deformable form factors in the theory of elementary particles”, Nuovo Cimento, 3:supp. 4 (1956), 760–772 | DOI | MR

[7] R. P. Feynman, M. Kislinger, F. Ravndal, “Current matrix elements from a relativisti quark model”, Phys. Rev. D, 3:11 (1971), 2706–2732 | DOI

[8] T. De, Y. S. Kim, M. E. Noz, “Radial effects in the symmetric quark model”, Nuovo Cimento A, 13:4 (1973), 1089–1101 | DOI

[9] Y. S. Kim, M. E. Noz, “Group theory of covariant harmonic oscillators”, Am. J. Phys., 46:5 (1978), 480–483 | DOI

[10] Y. S. Kim, M. E. Noz, “Relativistic harmonic oscillators and hadronic structure in the quantum-mechanics curriculum”, Am. J. Phys., 46:5 (1978), 484–488 | DOI

[11] M. Moshinsky, A. Szczepaniak, “The Dirac oscillator”, J. Phys. A: Math. Gen., 22:17 (1989), L817–L819 | DOI | MR

[12] O. L. de Lange, “Shift operators for a Dirac oscillator”, J. Math. Phys., 32:5 (1991), 1296–1300 | DOI | MR

[13] Z.-F. Li, J.-J. Liu, W. Lucha, W.-G. Ma, F. F. Schöberl, “Relativistic harmonic oscillator”, J. Math. Phys., 46:10 (2005), 103514, 11 pp., arXiv: hep-ph/0501268 | DOI | MR

[14] K. Kowalski, J. Rembieliński, “Relativistic massless harmonic oscillator”, Phys. Rev. A, 81:1 (2010), 012118, 6 pp., arXiv: 1002.0474 | DOI

[15] A. D. Donkov, V. G. Kadyshevskii, M. D. Mateev, R. M. Mir-Kasimov, “Kvazipotentsialnoe uravnenie dlya relyativistskogo garmonicheskogo ostsillyatora”, TMF, 8:1 (1971), 61–72 | DOI

[16] N. M. Atakishiev, R. M. Mir-Kasimov, Sh. M. Nagiev, “Kvazipotentsialnye modeli relyativistskogo ostsillyatora”, TMF, 44:1 (1980), 47–62 | DOI | MR

[17] N. M. Atakishiev, “Kvazipotentsialnye volnovye funktsii relyativistskogo garmonicheskogo ostsillyatora i mnogochleny Pollacheka”, TMF, 58:2 (1984), 254–260 | DOI | MR

[18] N. M. Atakishiyev, R. M. Mir-Kasimov, Sh. M. Nagiyev, “A relativistic model of the isotropic oscillator”, Ann. Phys., 497:1 (1985), 25–30 | DOI | MR

[19] R. M. Mir-Kasimov, Sh. M. Nagiev, E. Dzh. Kagramanov, Relyativistskii lineinyi ostsillyator pod deistviem postoyannoi vneshnei sily i bilineinaya proizvodyaschaya funktsiya dlya polinomov Pollacheka, Preprint No214, SKB IFAN AzSSR, Baku, 1987

[20] E. D. Kagramanov, R. M. Mir-Kasimov, Sh. M. Nagiyev, “The covariant linear oscillator and generalized realization of the dynamical $\mathrm{SU}(1,1)$ symmetry algebra”, J. Math. Phys., 31:7 (1990), 1733–1738 | DOI | MR

[21] R. M. Mir-Kasimov, “$\mathrm{SU}_q(1,1)$ and the relativistic oscillator”, J. Phys. A: Math. Gen., 24:18 (1991), 4283–4302 | DOI | MR

[22] Yu. A. Grishechkin, V. N. Kapshai, “Reshenie uravneniya Logunova–Tavkhelidze dlya trekhmernogo ostsillyatornogo potentsiala v relyativistskom konfiguratsionnom predstavlenii”, Izv. vuzov. Fizika, 61:9 (2018), 83–89 | DOI

[23] N. M. Atakishiyev, Sh. M. Nagiyev, K. B. Wolf, “Realization of $Sp(2,\mathfrak{R})$ by finite-difference operators: the relativistic oscillator in an external field”, J. Group Theor. Phys., 3:1 (1995), 61–70 | MR

[24] Sh. M. Nagiev, R. M. Mir-Kasimov, “Relyativistskii lineinyi ostsillyator pod deistviem postoyannoi vneshnei sily. Volnovye funktsii i dinamieskaya gruppa simmetrii”, TMF, 208:3 (2021), 481–494 | DOI | DOI

[25] Yu. A. Grishechkin, V. N. Kapshai, “Priblizhennoe reshenie uravneniya Logunova–Tavkhelidze dlya odnomernogo ostsillyatornogo potentsiala v relyativistskom konfiguratsionnom predstavlenii”, TMF, 211:3 (2022), 455–468 | DOI | DOI

[26] V. G. Kadyshevsky, R. M. Mir-Kasimov, N. B. Skachkov, “Quasi-potential approach and the expansion in relativistic spherical functions”, Nuovo Cimento A, 55:2 (1968), 233–257 | DOI

[27] V. G. Kadyshevskii, R. M. Mir-Kasimov, N. B. Skachkov, “Trekhmernaya formulirovka relyativistskoi problemy dvukh tel”, EChAYa, 2:3 (1972), 635–690 | DOI

[28] N. M. Atakishiyev, K. B. Wolf, “Generalized coherent states for a relativistic model of the linear oscillator in a homogeneous external field”, Rep. Math. Phys., 27:3 (1989), 305–311 | DOI | MR

[29] N. M. Atakishiev, Sh. M. Nagiev, K. B. Volf, “O funktsiyakh raspredeleniya Vignera dlya relyativistskogo lineinogo ostsillyatora”, TMF, 114:3 (1998), 410–425 | DOI | DOI | MR | Zbl

[30] Sh. M. Nagiyev, G. H. Guliyeva, E. I. Jafarov, “The Wigner function of the relativistic finite-difference oscillator in an external field”, J. Phys. A: Math. Theor., 42:45 (2009), 454015, 10 pp. | DOI | MR

[31] K. Husimi, “Miscellanea in elementary quantum mechanics, II”, Progr. Theor. Phys., 9:4 (1953), 381–402 | DOI

[32] E. H. Kerner, “Note on the forced and damped oscillator in quantum mechanics”, Can. J. Phys., 36 (1958), 371–377 | DOI

[33] Sh. M. Nagiev, A. I. Akhmedov, “O vremennoi evolyutsii kvadratichnykh kvantovykh sistem: operatory evolyutsii, propagatory, invarianty”, TMF, 198:3 (2019), 451–472 | DOI | DOI | MR

[34] A. Barut, R. Ronchka, Teoriya predstavlenii grupp i ee prilozheniya, v. 2, Mir, M., 1980 | DOI | MR | Zbl | Zbl

[35] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady, v. 3, Spetsialnye funktsii, Nauka, M., 1983 | MR

[36] R. W. Fuller, S. M. Harris, E. L. Slaggie, “$S$-matrix solution for the forced harmonic oscillator”, Am. J. Phys., 31:6 (1963), 431–439 | MR

[37] P. Carruthers, M. M. Nieto, “Coherent states and forced quantum oscillator”, Am. J. Phys., 33:7 (1965), 537–544 | DOI | MR

[38] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR

[39] R. Koekoek, P. A. Lesky, R. F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their q-Analogues, Springer, Berlin, 2010 | DOI | MR

[40] M. M. Nieto, D. R. Truax, “Holstein–Primakoff/Bogoliubov transformations and multiboson system”, Fortschr. Phys., 45:2 (1997), 145–156 | DOI | MR

[41] A. M. Perelomov, “Coherent states for arbitrary Lie group”, Commun. Math. Phys., 26:3 (1972), 222–236 | DOI | MR

[42] A. O. Barut, L. Girardello, “New ‘coherent’ states associated with non-compact groups”, Commun. Math. Phys., 21:1 (1971), 41–55 | DOI | MR

[43] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady, v. 1, Elementarnye funktsii, Nauka, M., 2002 | MR | MR | Zbl