Mots-clés : solitons, Darboux transformation.
@article{TMF_2023_214_1_a2,
author = {A. Inam and M. ul Hassan},
title = {Exact solitons of an~$N$-component discrete coupled integrable system},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {43--80},
year = {2023},
volume = {214},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a2/}
}
A. Inam; M. ul Hassan. Exact solitons of an $N$-component discrete coupled integrable system. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 1, pp. 43-80. http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a2/
[1] M. J. Ablowitz, B. Prinari, A. D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems, London Mathematical Society Lecture Note Series, 302, Univ. Press, Cambridge, 2004 | MR
[2] Y. B. Suris, The Problem Of Integrable Discretization: Hamiltonian Approach, Progress in Mathematics, 219, Birkhäuser, Basel, 2012 | DOI | MR
[3] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | DOI | MR | MR | Zbl | Zbl
[4] B. Grammaticos, T. Tamizhmani, Y. Kosmann-Schwarzbach (eds.), Discrete Integrable Systems, Lecture Notes in Physics, 644, Springer, Berlin, 2004 | DOI | MR
[5] M. Jimbo, T. Miwa, “Soliton equations and infinite dimensional Lie algebras”, Publ. Res. Inst. Math. Sci., 19:3 (1983), 943–1001 | DOI | MR
[6] K. Takasaki, T. Takebe, “Integrable hierarchies and dispersionless limit”, Rev. Math. Phys., 7:5 (1995), 743–808 | DOI | MR
[7] K. Takasaki, “Dispersionless Toda hierarchy and two-dimensional string theory”, Commun. Math. Phys., 170:1 (1995), 101–116, arXiv: hep-th/9403190 | DOI
[8] M. Dunajski, “An interpolating dispersionless integrable system”, J. Phys. A: Math. Theor., 41:31 (2008), 315202, 9 pp. | DOI | MR
[9] E. V. Ferapontov, B. S. Kruglikov, “Dispersionless integrable systems in 3D and Einstein–Weyl geometry”, J. Differ. Geom., 97:2 (2014), 215–254 | DOI | MR
[10] B. Kruglikov, O. Morozov, “Integrable dispersionless PDEs in 4D, their symmetry pseudogroups and deformations”, Lett. Math. Phys., 105:12 (2015), 1703–1723, arXiv: 1410.7104 | DOI | MR
[11] K. Konno, H. Oono, “New coupled integrable dipersionless equations”, J. Phys. Soc. Japan, 63:2 (1994), 377–378 | DOI
[12] M. Hassan, “Darboux transformation of the generalized coupled dispersionless integrable system”, J. Phys. A: Math. Theor., 42:6 (2009), 065203, 11 pp., arXiv: 0912.1671 | DOI | MR
[13] L. Vinet, G.-F. Yu, “Discrete analogues of the generalized coupled integrable dispersionless equations”, J. Phys. A: Math. Theor., 46:17 (2013), 175205, 16 pp. | DOI | MR
[14] T. Alagesan, Y. Chung, K. Nakkeeran, “Bäcklund transformation and soliton solutions for the coupled dispersionless equations”, Chaos Solitons Fractals, 21:1 (2004), 63–67 | DOI | MR
[15] T. Alagesan, K. Porsezian, “Singularity structure analysis and Hirota's bilinearisation of the coupled integrable dispersionless equations”, Chaos Solitons Fractals, 8:10 (1997), 1645–1650 ; “Painlevé analysis and the integrability properties of coupled integrable dispersionless equations”, 7:8 (1996), 1209–1212 | DOI | MR | DOI | MR
[16] H. W. A. Riaz, M. ul Hassan, “Darboux transformation of a semi-discrete coupled dispersionless integrable system”, Commun. Nonlinear Sci. Numer. Simulat., 48 (2017), 387–397 | DOI | MR
[17] M. J. Ablowits, D. J. Kaup, A. C. Newell, “Coherent pulse propagation, a dispersive, irreversible phenomenon”, J. Math. Phys., 15:11 (1974), 1852–1858 | DOI
[18] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR | MR
[19] S. P. Burtsev, V. E. Zakharov, A. V. Mikhailov, “Metod obratnoi zadachi s peremennym spektralnym parametrom”, TMF, 70:3 (1987), 323–342 | DOI | MR | Zbl
[20] Z. J. Qiao, W. Strampp, “Negative order MKdV hierarchy and a new integrable Neumann-like system”, Phys. A, 313:3–4 (2002), 365–380 | DOI | MR
[21] Kh. Vadzhakhat A. Riaz, M. Khassan, “Preobrazovanie Darbu dlya poludiskretnogo uravneniya korotkikh impulsov”, TMF, 194:3 (2018), 418–435 | DOI | DOI | MR
[22] H. W. A. Riaz, M. ul Hassan, “Multi-component semi-discrete coupled dispersionless integrable system, its lax pair and Darboux transformation”, Commun. Nonlinear Sci. Numer. Simul., 61 (2018), 71–83 | DOI | MR
[23] T. Tsuchida, H. Ujino, M. Wadati, “Integrable semi-discretization of the coupled modified KdV equations”, J. Math. Phys., 39:9 (1998), 4785–4813 | DOI | MR
[24] Y. Matsuno, “A novel multi-component generalization of the short pulse equation and its multisoliton solutions”, J. Math. Phys., 52:12 (2011), 123702, 22 pp., arXiv: 1111.1792 | DOI | MR
[25] T. Tsuchida, M. Wadati, “Multi-field integrable systems related to WKI-type eigenvalue problems”, J. Phys. Soc. Japan, 68:7 (1999), 2241–2245, arXiv: solv-int/9907018 | DOI
[26] G.-F. Yu, H.-W. Tam, “A vector asymmetrical NNV equation: soliton solutions, bilinear Bäcklund transformation and Lax pair”, J. Math. Anal. Appl., 344:2 (2008), 593–600 | DOI | MR
[27] H.-Q. Zhang, B. Tian, T. Xu, H. Li, C. Zhang, H. Zhang, “Lax pair and Darboux transformation for multi-component modified Korteweg–de Vries equations”, J. Phys. A: Math. Theor., 41:35 (2008), 355210, 13 pp. | DOI | MR
[28] J. Chen, Y. Chen, B.-F. Feng, H. Zhu, “Multi-component generalizations of the Hirota–Satsuma coupled KdV equation”, Appl. Math. Lett., 37 (2014), 15–21 | DOI | MR
[29] G.-F. Yu, “Soliton solutions of a multi-component derivative coupled integrable dispersionless equations”, J. Phys. Soc. Japan, 83:7 (2014), 074003, 4 pp. | DOI
[30] B.-F. Feng, K. Maruno, Y. Ohta, “Integrable semi-discretization of a multi-component short pulse equation”, J. Math. Phys., 56:4 (2015), 043502, 15 pp., arXiv: 1504.00878 | DOI | MR
[31] Z.-W. Xu, G.-F. Yu, Z.-N. Zhu, “Soliton dynamics to the multi-component complex coupled integrable dispersionless equation”, Commun. Nonlinear Sci. Numer. Simul., 40 (2016), 28–43 | DOI | MR
[32] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin, 1991 | MR
[33] C. Rogers, W. K. Schief, Bäcklund and Darboux Transformations. Geometry and Modern Applications in Soliton Theory, Cambridge Univ. Press, Cambridge, 2002 | DOI | MR | Zbl
[34] C. Gu, H. Hu, Z. Zhou, Darboux Transformations in Integrable Systems: Theory and Their Applications to Geometry, Mathematical Physics Studies, 26, Springer, Dordrecht, 2004 | MR
[35] D. Hobby, E. Shemyakova, “Classification of multidimensional Darboux transformations: first order and continued type”, SIGMA, 13 (2017), 010, 20 pp. | DOI | MR
[36] I. M. Gelfand, V. S. Retakh, “Teoriya nekommutativnykh determinantov i kharakteristicheskie funktsii grafov”, Funkts. analiz i ego pril., 26:4 (1992), 1–20 ; “Детерминанты матриц над некоммутативными кольцами”, 25:2 (1991), 13–25 | DOI | MR | Zbl | DOI | MR | Zbl
[37] P. Etingof, I. Gelfand, V. Retakh, Nonabelian integrable systems, quasideterminants, and Marchenko lemma, arXiv: q-alg/9707017
[38] I. Gelfand, S. Gelfand, V. Retakh, R. L. Wilson, “Quasideterminants”, Adv. Math., 193:1 (2005), 56–141 | DOI | MR