Exact solitons of an $N$-component discrete coupled integrable system
Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 1, pp. 43-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An $N$-component discrete coupled (dC) system is presented. The Lax pair of the system is written in terms of $2\times 2$ matrices and generalized to $2^N\times 2^N$ matrices, giving rise to an $N$-component discrete coupled system. A Darboux matrix is introduced to construct solutions of the Lax pair equations giving rise to solutions of the dC system. Soliton solutions of the dC system are computed and their interactions are studied.
Keywords: discrete integrable systems
Mots-clés : solitons, Darboux transformation.
@article{TMF_2023_214_1_a2,
     author = {A. Inam and M. ul Hassan},
     title = {Exact solitons of an~$N$-component discrete coupled integrable system},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {43--80},
     year = {2023},
     volume = {214},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a2/}
}
TY  - JOUR
AU  - A. Inam
AU  - M. ul Hassan
TI  - Exact solitons of an $N$-component discrete coupled integrable system
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 43
EP  - 80
VL  - 214
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a2/
LA  - ru
ID  - TMF_2023_214_1_a2
ER  - 
%0 Journal Article
%A A. Inam
%A M. ul Hassan
%T Exact solitons of an $N$-component discrete coupled integrable system
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 43-80
%V 214
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a2/
%G ru
%F TMF_2023_214_1_a2
A. Inam; M. ul Hassan. Exact solitons of an $N$-component discrete coupled integrable system. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 1, pp. 43-80. http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a2/

[1] M. J. Ablowitz, B. Prinari, A. D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems, London Mathematical Society Lecture Note Series, 302, Univ. Press, Cambridge, 2004 | MR

[2] Y. B. Suris, The Problem Of Integrable Discretization: Hamiltonian Approach, Progress in Mathematics, 219, Birkhäuser, Basel, 2012 | DOI | MR

[3] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | DOI | MR | MR | Zbl | Zbl

[4] B. Grammaticos, T. Tamizhmani, Y. Kosmann-Schwarzbach (eds.), Discrete Integrable Systems, Lecture Notes in Physics, 644, Springer, Berlin, 2004 | DOI | MR

[5] M. Jimbo, T. Miwa, “Soliton equations and infinite dimensional Lie algebras”, Publ. Res. Inst. Math. Sci., 19:3 (1983), 943–1001 | DOI | MR

[6] K. Takasaki, T. Takebe, “Integrable hierarchies and dispersionless limit”, Rev. Math. Phys., 7:5 (1995), 743–808 | DOI | MR

[7] K. Takasaki, “Dispersionless Toda hierarchy and two-dimensional string theory”, Commun. Math. Phys., 170:1 (1995), 101–116, arXiv: hep-th/9403190 | DOI

[8] M. Dunajski, “An interpolating dispersionless integrable system”, J. Phys. A: Math. Theor., 41:31 (2008), 315202, 9 pp. | DOI | MR

[9] E. V. Ferapontov, B. S. Kruglikov, “Dispersionless integrable systems in 3D and Einstein–Weyl geometry”, J. Differ. Geom., 97:2 (2014), 215–254 | DOI | MR

[10] B. Kruglikov, O. Morozov, “Integrable dispersionless PDEs in 4D, their symmetry pseudogroups and deformations”, Lett. Math. Phys., 105:12 (2015), 1703–1723, arXiv: 1410.7104 | DOI | MR

[11] K. Konno, H. Oono, “New coupled integrable dipersionless equations”, J. Phys. Soc. Japan, 63:2 (1994), 377–378 | DOI

[12] M. Hassan, “Darboux transformation of the generalized coupled dispersionless integrable system”, J. Phys. A: Math. Theor., 42:6 (2009), 065203, 11 pp., arXiv: 0912.1671 | DOI | MR

[13] L. Vinet, G.-F. Yu, “Discrete analogues of the generalized coupled integrable dispersionless equations”, J. Phys. A: Math. Theor., 46:17 (2013), 175205, 16 pp. | DOI | MR

[14] T. Alagesan, Y. Chung, K. Nakkeeran, “Bäcklund transformation and soliton solutions for the coupled dispersionless equations”, Chaos Solitons Fractals, 21:1 (2004), 63–67 | DOI | MR

[15] T. Alagesan, K. Porsezian, “Singularity structure analysis and Hirota's bilinearisation of the coupled integrable dispersionless equations”, Chaos Solitons Fractals, 8:10 (1997), 1645–1650 ; “Painlevé analysis and the integrability properties of coupled integrable dispersionless equations”, 7:8 (1996), 1209–1212 | DOI | MR | DOI | MR

[16] H. W. A. Riaz, M. ul Hassan, “Darboux transformation of a semi-discrete coupled dispersionless integrable system”, Commun. Nonlinear Sci. Numer. Simulat., 48 (2017), 387–397 | DOI | MR

[17] M. J. Ablowits, D. J. Kaup, A. C. Newell, “Coherent pulse propagation, a dispersive, irreversible phenomenon”, J. Math. Phys., 15:11 (1974), 1852–1858 | DOI

[18] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR | MR

[19] S. P. Burtsev, V. E. Zakharov, A. V. Mikhailov, “Metod obratnoi zadachi s peremennym spektralnym parametrom”, TMF, 70:3 (1987), 323–342 | DOI | MR | Zbl

[20] Z. J. Qiao, W. Strampp, “Negative order MKdV hierarchy and a new integrable Neumann-like system”, Phys. A, 313:3–4 (2002), 365–380 | DOI | MR

[21] Kh. Vadzhakhat A. Riaz, M. Khassan, “Preobrazovanie Darbu dlya poludiskretnogo uravneniya korotkikh impulsov”, TMF, 194:3 (2018), 418–435 | DOI | DOI | MR

[22] H. W. A. Riaz, M. ul Hassan, “Multi-component semi-discrete coupled dispersionless integrable system, its lax pair and Darboux transformation”, Commun. Nonlinear Sci. Numer. Simul., 61 (2018), 71–83 | DOI | MR

[23] T. Tsuchida, H. Ujino, M. Wadati, “Integrable semi-discretization of the coupled modified KdV equations”, J. Math. Phys., 39:9 (1998), 4785–4813 | DOI | MR

[24] Y. Matsuno, “A novel multi-component generalization of the short pulse equation and its multisoliton solutions”, J. Math. Phys., 52:12 (2011), 123702, 22 pp., arXiv: 1111.1792 | DOI | MR

[25] T. Tsuchida, M. Wadati, “Multi-field integrable systems related to WKI-type eigenvalue problems”, J. Phys. Soc. Japan, 68:7 (1999), 2241–2245, arXiv: solv-int/9907018 | DOI

[26] G.-F. Yu, H.-W. Tam, “A vector asymmetrical NNV equation: soliton solutions, bilinear Bäcklund transformation and Lax pair”, J. Math. Anal. Appl., 344:2 (2008), 593–600 | DOI | MR

[27] H.-Q. Zhang, B. Tian, T. Xu, H. Li, C. Zhang, H. Zhang, “Lax pair and Darboux transformation for multi-component modified Korteweg–de Vries equations”, J. Phys. A: Math. Theor., 41:35 (2008), 355210, 13 pp. | DOI | MR

[28] J. Chen, Y. Chen, B.-F. Feng, H. Zhu, “Multi-component generalizations of the Hirota–Satsuma coupled KdV equation”, Appl. Math. Lett., 37 (2014), 15–21 | DOI | MR

[29] G.-F. Yu, “Soliton solutions of a multi-component derivative coupled integrable dispersionless equations”, J. Phys. Soc. Japan, 83:7 (2014), 074003, 4 pp. | DOI

[30] B.-F. Feng, K. Maruno, Y. Ohta, “Integrable semi-discretization of a multi-component short pulse equation”, J. Math. Phys., 56:4 (2015), 043502, 15 pp., arXiv: 1504.00878 | DOI | MR

[31] Z.-W. Xu, G.-F. Yu, Z.-N. Zhu, “Soliton dynamics to the multi-component complex coupled integrable dispersionless equation”, Commun. Nonlinear Sci. Numer. Simul., 40 (2016), 28–43 | DOI | MR

[32] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin, 1991 | MR

[33] C. Rogers, W. K. Schief, Bäcklund and Darboux Transformations. Geometry and Modern Applications in Soliton Theory, Cambridge Univ. Press, Cambridge, 2002 | DOI | MR | Zbl

[34] C. Gu, H. Hu, Z. Zhou, Darboux Transformations in Integrable Systems: Theory and Their Applications to Geometry, Mathematical Physics Studies, 26, Springer, Dordrecht, 2004 | MR

[35] D. Hobby, E. Shemyakova, “Classification of multidimensional Darboux transformations: first order and continued type”, SIGMA, 13 (2017), 010, 20 pp. | DOI | MR

[36] I. M. Gelfand, V. S. Retakh, “Teoriya nekommutativnykh determinantov i kharakteristicheskie funktsii grafov”, Funkts. analiz i ego pril., 26:4 (1992), 1–20 ; “Детерминанты матриц над некоммутативными кольцами”, 25:2 (1991), 13–25 | DOI | MR | Zbl | DOI | MR | Zbl

[37] P. Etingof, I. Gelfand, V. Retakh, Nonabelian integrable systems, quasideterminants, and Marchenko lemma, arXiv: q-alg/9707017

[38] I. Gelfand, S. Gelfand, V. Retakh, R. L. Wilson, “Quasideterminants”, Adv. Math., 193:1 (2005), 56–141 | DOI | MR