Integration of the Hirota equation with time-dependent coefficients
Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 1, pp. 30-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Hirota equation with time-dependent coefficients can be integrated in the class of rapidly decreasing functions using the inverse scattering problem. An example illustrating the application of the obtained results is given. The Cauchy problem for the loaded Hirota equation is solved in the class of rapidly decreasing functions.
Keywords: inverse scattering transform method, scattering data, Gelfand–Levitan–Marchenko integral equation.
Mots-clés : Hirota equation
@article{TMF_2023_214_1_a1,
     author = {U. A. Khoitmetov},
     title = {Integration of the {Hirota} equation with time-dependent coefficients},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {30--42},
     year = {2023},
     volume = {214},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a1/}
}
TY  - JOUR
AU  - U. A. Khoitmetov
TI  - Integration of the Hirota equation with time-dependent coefficients
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 30
EP  - 42
VL  - 214
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a1/
LA  - ru
ID  - TMF_2023_214_1_a1
ER  - 
%0 Journal Article
%A U. A. Khoitmetov
%T Integration of the Hirota equation with time-dependent coefficients
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 30-42
%V 214
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a1/
%G ru
%F TMF_2023_214_1_a1
U. A. Khoitmetov. Integration of the Hirota equation with time-dependent coefficients. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 1, pp. 30-42. http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a1/

[1] K. U. Tariq, M. Younis, H. Rezazadeh, S. T. R. Rizvi, M. S. Osman, “Optical solitons with quadratic–cubic nonlinearity and fractional temporal evolution”, Modern Phys. Lett. B, 32:26 (2018), 1850317, 13 pp. | DOI | MR

[2] M. S. Osman, “One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada–Kotera equation”, Nonlinear Dynam., 96:2 (2019), 1491–1496 | DOI

[3] M. S. Osman, K. U. Tariq, A. Bekir, A. Elmoasry, N. S. Elazab, M. Younis, M. Abdel-Aty, “Investigation of soliton solutions with different wave structures to the $(2+1)$-dimensional Heisenberg ferromagnetic spin chain equation”, Commun. Theor. Phys., 72:3 (2020), 035002, 7 pp. | DOI | MR

[4] D. Lu, K. U. Tariq, M. S. Osman, D. Baleanu, M. Younis, M. M. A. Khater, “New analytical wave structures for the $(3+1)$-dimensional Kadomtsev–Petviashvili and the generalized Boussinesq models and their applications”, Results Phys., 14 (2019), 102491, 7 pp. | DOI

[5] A. R. Seadawy, “Nonlinear wave solutions of the three-dimensional Zakharov–Kuznetsov–Burgers equation in dusty plasma”, Phys. A, 439 (2015), 124–131 | DOI | MR

[6] A.-M. Wazwaz, “Multiple complex soliton solutions for integrable negative-order KdV and integrable negative-order modified KdV equations”, Appl. Math. Lett., 88 (2019), 1–7 | DOI | MR

[7] K. S. Al-Ghafri, H. Rezazadeh, “Solitons and other solutions of $(3+1)$-dimensional space-time fractional modified KdV–Zakharov–Kuznetsov equation”, Appl. Math. Nonlinear Sci., 4:2 (2019), 289–304 | MR

[8] A.-M. Wazwaz, “A $(2+1)$-dimensional time-dependent Date–Jimbo–Kashiwara–Miwa equation: Painlevé integrability and multiple soliton solutions”, Comput. Math. Appl., 79:4 (2020), 1145–1149 | DOI | MR

[9] D. W. Brzezinski, “Review of numerical methods for NumILPT with computational accuracy assessment for fractional calculus”, App. Math. Nonlinear Sci., 3:2 (2018), 487–502 | MR

[10] R. Hirota, “Exact envelope-soliton solutions of a nonlinear wave equation”, J. Math. Phys., 14:7 (1973), 805–809 | DOI | MR

[11] R. Hirota, The Direct Method in Soliton Theory, Cambridge Tracts in Mathematics, 155, Cambridge Univ. Press, Cambridge, 2004 | DOI | MR

[12] Y. Fukumoto, T. Miyazaki, “Three-dimensional distortions of a vortex filament with axial velocity”, J. Fluid Mech., 222 (1991), 369–416 | DOI | MR

[13] M. Eslami, M. A. Mirzazadeh, A. Neirameh, “New exact wave solutions for Hirota equation”, Pramana – J. Phys., 84:1 (2015), 3–8 | DOI

[14] J. Cen, F. Correa, A. Fring, “Integrable nonlocal Hirota equations”, J. Math. Phys., 60:8 (2019), 081508 | DOI | MR

[15] Q. Wang, Y. Chen, B. Li, H.-Q. Zhang, “New exact travelling wave solutions to Hirota equation and $(1+1)$-dimensional dispersive long wave equation”, Commun. Theor. Phys., 41:6 (2004), 821–828 | DOI | MR

[16] A. A. Al Qarni, A. A. Alshaery, H. O. Bakodah, J. F. Gómez-Aguilar, “Novel dynamical solitons for the evolution of Schrödinger–Hirota equation in optical fibres”, Opt. Quant. Electron., 53 (2021), 151, 15 pp. | DOI

[17] X. Zhang, L. Ling, “Asymptotic analysis of high-order solitons for the Hirota equation”, Phys. D, 426 (2021), 132982, 26 pp. | DOI | MR

[18] A. Ankiewicz, J. M. Soto-Crespo, N. Akhmediev, “Rogue waves and rational solutions of the Hirota equation”, Phys. Rev. E, 81:4 (2010), 046602, 8 pp. | DOI | MR

[19] S. Chen, Z. Yan, “The Hirota equation: Darboux transform of the Riemann–Hilbert problem and higher-order rogue waves”, App. Math. Lett., 95 (2019), 65–71 | DOI | MR

[20] F. Demontis, G. Ortenzi, C. van der Mee, “Exact solutions of the Hirota equation and vortex filaments motion”, Phys. D, 313 (2015), 61–80 | DOI | MR

[21] Y. Li, S.-F. Tian, “Inverse scattering transform and soliton solutions of an integrable nonlocal Hirota equation”, Commun. Pure Appl. Anal., 21:1 (2022), 293–313 | DOI

[22] Y. Tao, J. He, “Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation”, Phys. Rev. E, 85:2 (2012), 026601, 7 pp. | DOI

[23] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR | MR | Zbl | Zbl

[24] R. Dodd, Dzh. Eilbek, Dzh. Gibbon, Kh. Morris, Solitony i nelineinye volnovye uravneniya, Mir, M., 1988 | MR | MR | Zbl

[25] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | DOI | MR | MR | Zbl

[26] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, “Method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19:19 (1967), 1095–1097 | DOI

[27] V. E. Zakharov, A. B. Shabat, “Tochnaya teoriya dvumernoi samofokusirovki v odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–134 | MR

[28] M. Wadati, “The exact solution of the modified Korteweg–de Vries equation”, J. Phys. Soc. Japan, 32:6 (1972), 1681–1681 | DOI

[29] P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure Appl. Math., 21:5 (1968), 467–490 | DOI | MR

[30] A. B. Khasanov, U. A. Khoitmetov, “Ob integrirovanii uravneniya Kortevega–de Friza v klasse bystroubyvayuschikh kompleksnoznachnykh funktsii”, Izv. vuzov. Matem., 2018, no. 3, 79–90 | DOI | Zbl

[31] V. E. Zakharov, L. A. Takhtadzhyan, L. D. Faddeev, “Polnoe opisanie reshenii ‘sin-Gordon’ uravneniya”, Dokl. AN SSSR, 219:6 (1974), 1334–1337 | MR | Zbl

[32] F. Demontis, “Tochnye resheniya modifitsirovannogo uravneniya Kortevega–de Friza”, TMF, 168:1 (2011), 35–48 | DOI | DOI | MR

[33] G. U. Urazboev, U. A. Khoitmetov, A. K. Babadzhanova, “Integrirovanie matrichnogo modifitsirovannogo uravneniya Kortevega–de Friza s istochnikom integralnogo tipa”, TMF, 203:3 (2020), 351–364 | DOI | DOI | MR

[34] R. Camassa, D. D. Holm, “An integrable shallow water equation with peaked solitons”, Phys. Rev. Lett., 71:11 (1993), 1661–1664, arXiv: patt-sol/9305002 | DOI | MR

[35] I. S. Frolov, “Obratnaya zadacha rasseyaniya dlya sistemy Diraka na vsei osi”, Dokl. AN SSSR, 207:1 (1972), 44–47 | MR | Zbl

[36] A. B. Khasanov, “Ob obratnoi zadachi teorii rasseyaniya dlya sistemy dvukh nesamosopryazhennykh differentsialnykh uravnenii pervogo poryadka”, Dokl. AN SSSR, 277:3 (1984), 559–562 | MR | Zbl

[37] A. M. Nakhushev, “Nagruzhennye uravneniya i ikh prilozheniya”, Differents. uravneniya, 19:1 (1983), 86–94 | MR

[38] A. M. Nakhushev, Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995

[39] A. I. Kozhanov, “Nelineinye nagruzhennye uravneniya i obratnye zadachi”, Zh. vychisl. matem. i matem. fiz., 44:4 (2004), 694–716 | MR | Zbl

[40] A. B. Hasanov, U. A. Hoitmetov, “On integration of the loaded Korteweg–de Vries equation in the class of rapidly decreasing functions”, Proceedings of the Institute of Mathematics and Mechanics National Academy of Sciences of Azerbaijan, 47:2 (2021), 250–261 | DOI | MR

[41] U. A. Khoitmetov, “Integrirovanie nagruzhennogo uravneniya KdF s samosoglasovannym istochnikom integralnogo tipa v klasse bystroubyvayuschikh kompleksnoznachnykh funktsii”, Matem. tr., 24:2 (2021), 181–198 | DOI | DOI

[42] A. B. Khasanov, U. A. Hoitmetov, “On integration of the loaded mKdV equation in the class of rapidly decreasing functions”, Izv. Irkut. gos. un-ta. Ser. Matem., 38 (2021), 19–35 | DOI | MR

[43] A. B. Khasanov, U. A. Khoitmetov, “Integrirovanie obschego nagruzhennogo uravneniya Kortevega–de Friza s integralnym istochnikom v klasse bystroubyvayuschikh kompleksnoznachnykh funktsii”, Izv. vuzov. Matem., 2021, no. 7, 52–66 | DOI

[44] A. B. Khasanov, U. A. Khoitmetov, “O kompleksnoznachnykh resheniyakh obschego nagruzhennogo uravneniya Kortevega–de Friza s istochnikom”, Differents. uravneniya, 58:3 (2022), 385–394 | DOI | DOI

[45] A. B. Khasanov, T. G. Khasanov, “Integrirovanie nelineinogo uravneniya Kortevega–de Friza s nagruzhennym chlenom i istochnikom”, Sib. zhurn. industr. matem., 25:2 (2022), 127–142 | MR

[46] U. A. Hoitmetov, “Integration of the loaded general Korteweg–de Vries equation in the class of rapidly decreasing complex-valued functions”, Eurasian Math. J., 13:2 (2022), 43–54 | DOI | MR